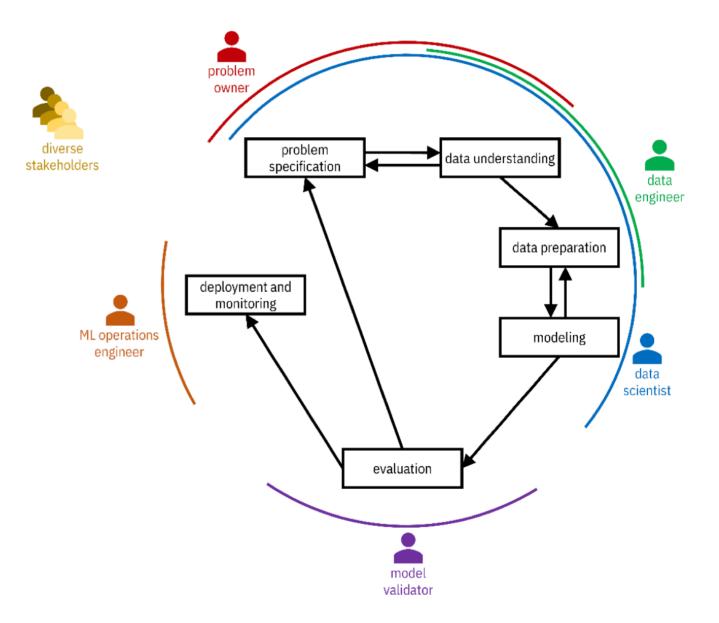
# Machine Learning for Design Lecture 2 Introduction to Machine Learning. Part 2

# The Machine Learning Life-Cycle



# **Cross-Industry** Standard **Process for Data Mining** (CRISP-DM) methodology

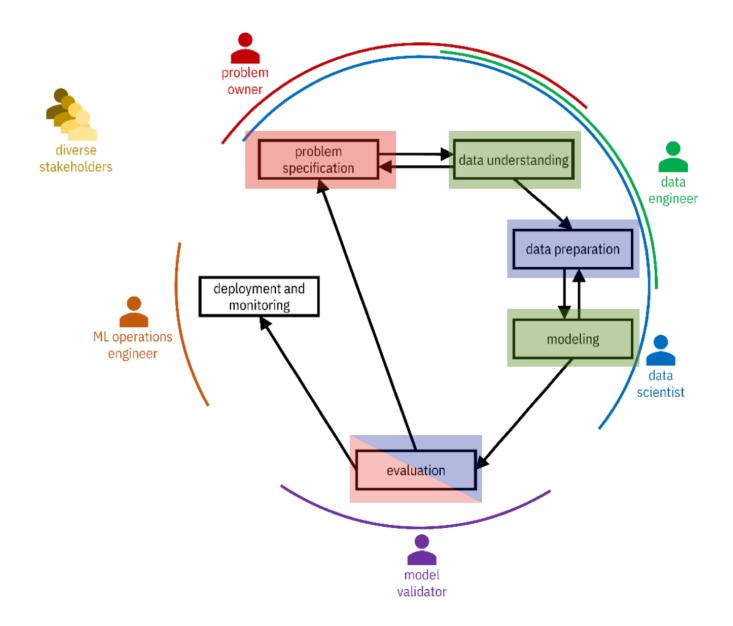


# **CRISP-DM In our course**

Today and in all modules

In Module 4

In Module 3



# **Problem Specification**

- What is the problem owner hoping to accomplish and why?
- Why am I (being asked to) solve it?
- Am I the right person to solve this problem?
- What are the (psychological, societal, and environmental) repercussions of building this technology?
- Should this thing be built at all?
- What are the metrics of success?

## **Data Understanding**

Know your data!

- Data needs to be collected  $\rightarrow$ Datasets
- What data is available?
- What data should be available but isn't?
- What population/system/process is your data representing?
- And what properties of such population/system/process are included (or excluded)?
- What biases (social, population, temporal) are present in your datasets?

## **Data Preparation**

## Data integration

- Extracting, transforming, and loading (ETL) data from disparate relevant databases and other data sources
- This step is most challenging when dealing with big data sources

## Data cleaning

- Filling missing values
- Transforming value types (e.g. binning)
- Dropping features that should not be considered

## Feature engineering

Transform the data to derive new features

## Modeling

- **Select** a training algorithm
- Use it to **find patterns** in the training dataset
- Generalize them to fit a statistical model

- **Enhance** the model to satisfy additional objectives and constraints captured in the problem specification
  - e.g., increase reliability, mitigate biases, generate explanations

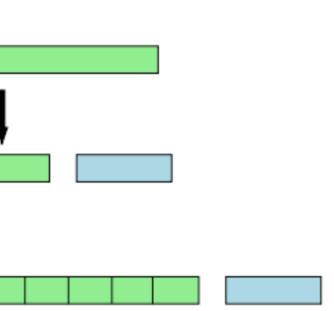
## No free-lunch theorem

 There is no one best machine learning algorithm for all problems and datasets



# **Evaluation**

- Testing and validation of the model
  - Also against the problem specification requirements
- Performed on data not used for training
  - Hold out dataset



# Model auditing/risk management

POLICY AND LEGISLATION | Publication 21 April 2021

### Proposal for a Regulation laying down harmonised rules on artificial intelligence

The Commission has proposed the first ever legal framework on AI, which addresses the risks of AI and positions Europe to play a leading role globally.

The Proposal for a Regulation on artificial intelligence was announced by the Commission in April 2021. It aims to address risks of specific uses of AI, categorising them into 4 different levels: unacceptable risk, high risk, limited risk, and minimal risk.

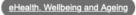
In doing so, the AI Regulation will make sure that Europeans can trust the AI they are using. The Regulation is also key to building an ecosytem of excellence in AI and strengthening the EU's ability to compete globally. It goes hand in hand with the Coordinated Plan on Al.

View the proposal for a Regulation in all EU languages on EUR-Lex

See also

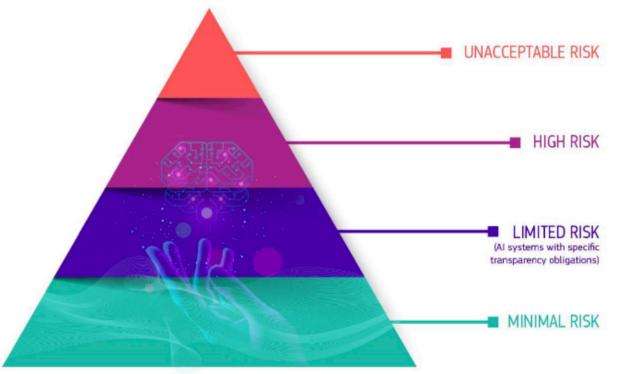
Communication on Fostering a European approach to Artificial Intelligence

Related topics



Advanced Digital Technologie

Artificial intelligence



The Pyramid of Criticality for AI Systems





## **Deployment and** monitoring

- What data infrastructure will bring new data to the model?
- Will predictions be made in batch or one-by-one?
- How much latency is allowed?
- How will the user interact with the system?
  - Is there a problem here?

- Tools to monitor the model's performance
  - And ensure it is operating as expected

# Data The raw material



# Data



Setosa

Feature

Virginica

Versicolor

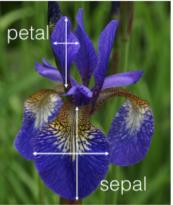
Label

|   | $\bullet$    | •             | •            | $\bullet$   | •               |            |
|---|--------------|---------------|--------------|-------------|-----------------|------------|
|   | sepal_lenght | sepal_width   | petal_lenght | petal_width | Class           |            |
|   | 5.0          | 3.3           | 1.4          | 0.2         | lris-setosa     | Record     |
|   | 7.0          | 3.2           | 4.7          | 1.4         | Iris-versicolor |            |
|   | 5.7          | 2.8           | 4.1          | 1.3         | Iris-versicolor | Label Valu |
| Ļ | 6.3          | 3.3           | 6.0          | 2.5         | Iris-virginica  |            |
|   | •            |               |              |             |                 |            |
|   | Dat          | aset Dimensio | nality       |             | Fea             | ture Value |

Feature 

Feature

Feature



rd / Sample / Data Item

alue

# **Types of Features / Label Values**

## Categorical

- Named Data
- Can take numerical values, but no mathematical meaning

## – Numerical

- - Measurements
- Take numerical values (discrete or continuous)

## **Categorical Nominal** Categorical Ordinal

- No order - Order
- No direction
- e.g. marital status, gender, ethnicity

- Direction
- e.g., letter grades (A,B,C,D), ratings (dislike, neutral, like)

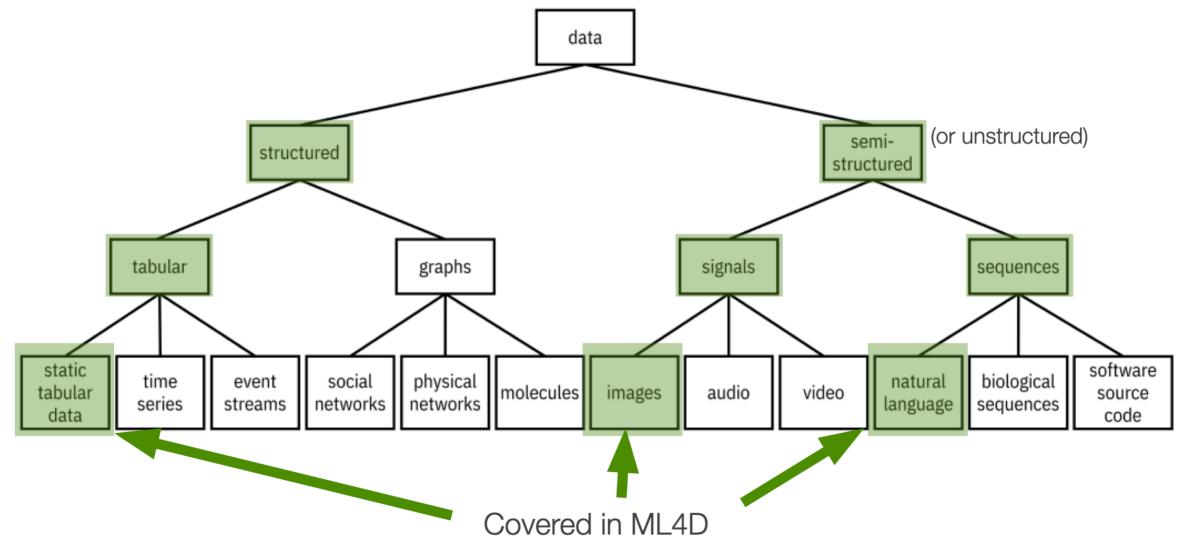
### **Numerical Ratio Numerical Interval**

- Difference between measurements measurements
- No true zero or fixed beginning

- True zero exists
- e.g., temperature (K), age, height
- e.g., temperature (C or F), IQ, time, dates

# Difference between

# **Data Modalities**



## **Key Dimensions**

| <b>Modality</b>     | <b>Quantity</b>       | <b>Quality</b> | <b>Freshness</b>   |
|---------------------|-----------------------|----------------|--------------------|
| Structured          | Number of records     | Errors         | Rate of collection |
| Semi-<br>structured | Number of<br>features | Missing data   |                    |
|                     |                       | Bias           |                    |

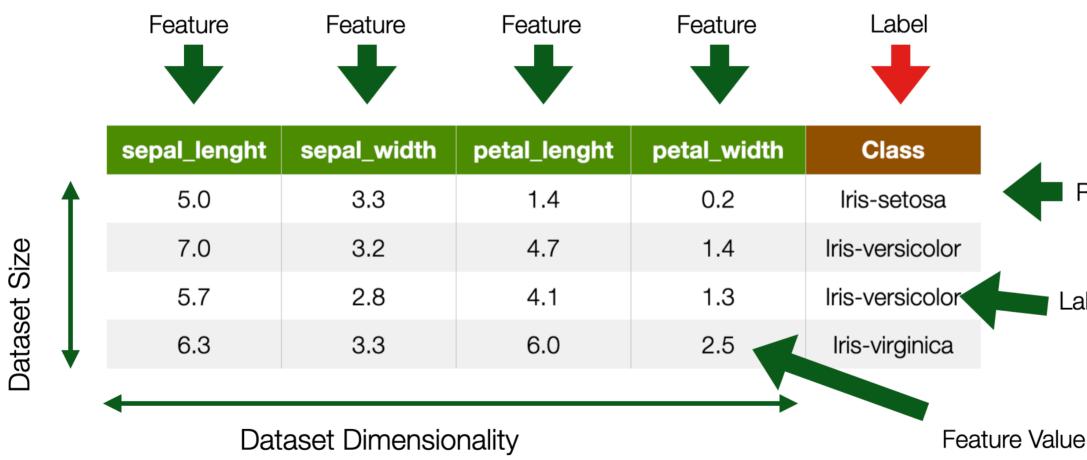


## Acquisition

### Licensing

# Cleaning and integrations

# **Static Tabular Data**

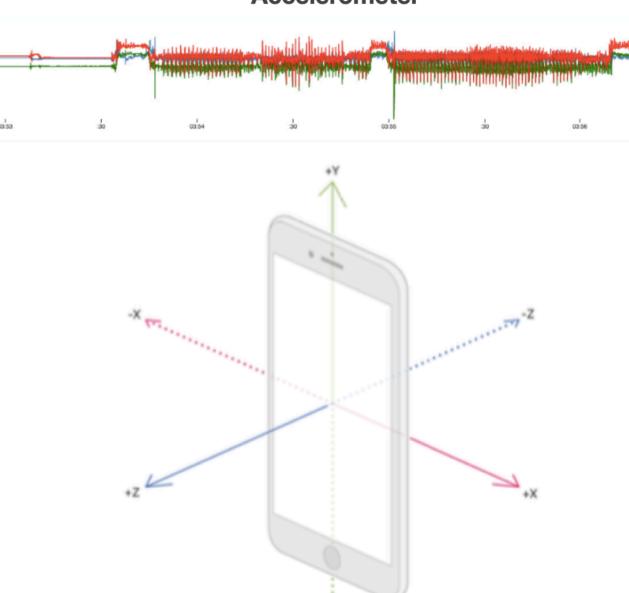


Record / Sample / Data Item

Label Value

## **Time Series**

- tabular data with time feature
- For instance
  - Sensor data, Stock market data
- Label is usually associated with a set of records
  - e.g. a continuous movement of the phone indicating an action



### Accelerometer

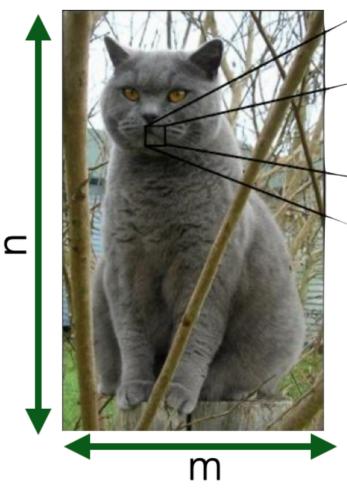
| Time    |             |      |         |      |
|---------|-------------|------|---------|------|
| Feature | Timestamp   | X    | У       | Z    |
|         | 15060015925 | 2.04 | 3.72    | 8.12 |
|         | 15060015943 | 1.96 | 4.73.68 | 7.56 |
|         | 15060015980 | 1.63 | 3.56    | 6.53 |
|         | 1506001610  | 1.06 | 3.76    | 5.81 |

### Class

### Device Rotation

## Images

- Visual content acquired through cameras, scanners, etc.
- Each pixel in an image is a feature
  - But spatially and geometrically organised
  - e.g., edges, corners
- Feature values are numerical values across channels
  - e.g., *R,G,B*
- Dimensionality  $\rightarrow n x m$



| / | 05 | 02 | 22  | -97 | 38 | 15 | 00 | 40  | 00 | 75 | 04 | 85  | 07  | 78 | 52 | 12 | 50 | 77  | 01 |    |
|---|----|----|-----|-----|----|----|----|-----|----|----|----|-----|-----|----|----|----|----|-----|----|----|
|   | 49 | 49 | 99  | 40  | 17 | 81 | 18 | 57  | 60 | 87 | 17 | 40  | 98  | 43 | 69 | 44 | 11 | 36  | 62 | 00 |
|   | 81 | 49 | 31  | 73  | 55 | 79 | 14 | 29  | 93 | 71 | 40 | 67  | -   | 11 | 30 | 03 | 49 | 13  | 36 | 65 |
|   | 52 | 70 | 95  | 23  | 04 | 60 | 11 | 42  | 63 | -  | 68 | \$6 | 01  | 32 | 56 | 71 | 37 | 02  | 36 | 91 |
|   | 22 | 31 | 16  | 71  | 51 | 63 | -  | 89  | 41 | 92 | 36 | 54  | 22  | 40 | 40 | 28 | 66 | 33  | 13 | 80 |
|   | 24 | 47 | ختر | 60  | 99 | 03 | 15 | 02  | 44 | 75 | 33 | 53  | 78  | 36 | 84 | 20 | 35 | 17  | 12 | 50 |
| _ | 32 | 98 | 81  | 28  | 64 | 23 | 67 | 10  | 26 | 38 | 40 | 67  | 59  | 54 | 70 | 66 | 18 | 38  | 64 | 70 |
|   | 67 | 26 | 20  | 68  | 02 | 62 | 12 | 2.0 | 95 | 63 | 94 | 39  | 63  | 08 | 40 | 91 | 66 | 49  | 94 | 21 |
|   | 24 | 55 | 58  | 05  | 66 | 73 | 99 | 26  | 97 | 17 | 78 | 78  | 96  | 83 | 14 | 88 | 34 | 69  | 63 | 72 |
|   | 21 | 36 | 23  | 09  | 75 | 00 | 76 | 44  | 20 | 45 | 35 | 14  | 00  | 61 | 33 | 97 | 34 | 31  | 35 | 95 |
|   | 78 | 17 | 53  | 28  | 22 | 75 | 31 | 67  | 15 | 94 | 03 | 80  | 04  | 62 | 16 | 24 | 09 | 53  | 56 | 92 |
|   | 16 | 39 | 05  | 42  | 96 | 35 | 31 | 47  | 55 | 58 | 88 | 24  | 00  | 17 | 54 | 24 | 36 | 29  | 85 | 57 |
|   | 16 | 56 | 00  | 18  | 35 | 71 | 89 | 07  | 05 | 44 | 44 | 37  | 44  | 60 | 21 | 58 | 51 | 54  | 17 | 58 |
|   | 19 | 80 | 81  | 68  | 05 | 94 | 47 | 69  | 28 | 73 | 92 | 13  | 8.6 | 52 | 17 | 77 | 04 | 89  | 55 | 40 |
|   | 04 | 52 | 08  | 83  | 97 | 35 | 99 | 16  | 07 | 97 | 57 | 32  | 16  | 26 | 26 | 79 | 33 | 27  | 98 | 66 |
|   |    | 46 | 68  | \$7 | 57 | 62 | 20 | 72  | 03 | 46 | 33 | 67  | 46  | 55 | 12 | 32 | 63 | 93  | 53 | 69 |
|   | 04 | 42 | 16  | 13  | 30 | -  | 39 | 11  | 24 | 94 | 72 | 18  | 08  | 16 | 29 | 32 | 40 | 62  | 76 | 36 |
|   | 20 | 69 | 36  | 41  | 72 | 30 | 23 | 88  | 31 | -  | 99 | 69  | 82  | 67 | 59 | 85 | 74 | 04  | 36 | 16 |
|   | 20 | 73 | 35  | 29  | 78 | 31 | 90 | 01  | 74 | 31 | 49 | 71  | 55  | -  | 81 | 16 | 23 | \$7 | 05 | 54 |
| ~ | 01 | 70 | 54  | 71  | 83 | 51 | 54 | 69  | 16 | 92 | 33 | 48  | 61  | 45 | 52 | 01 | 69 | 2.7 | 49 | 48 |

| Image | P(1,1)      | P(2,1)      | P(3,1)      | <br>P(n,m) | Class |
|-------|-------------|-------------|-------------|------------|-------|
|       | 255, 0, 0   | 255, 1, 1   | 255, 0, 0   | R,G,B      | Cat   |
|       | 255, 213, 0 | 255, 213, 1 | 255, 213, 4 | R,G,B      | Dog   |
|       |             |             |             |            | Cat   |
|       |             |             |             |            | Duck  |



## **Textual documents**

- Sequence of alphanumerical characters
  - Short: e.g. tweets
  - Long: e.g Web documents, interview transcripts
- Features are (set of) words
  - Words are also syntactically and semantically organised
- Feature values are (set of) words occurences
- Dimensionality  $\rightarrow$  at least dictionary size



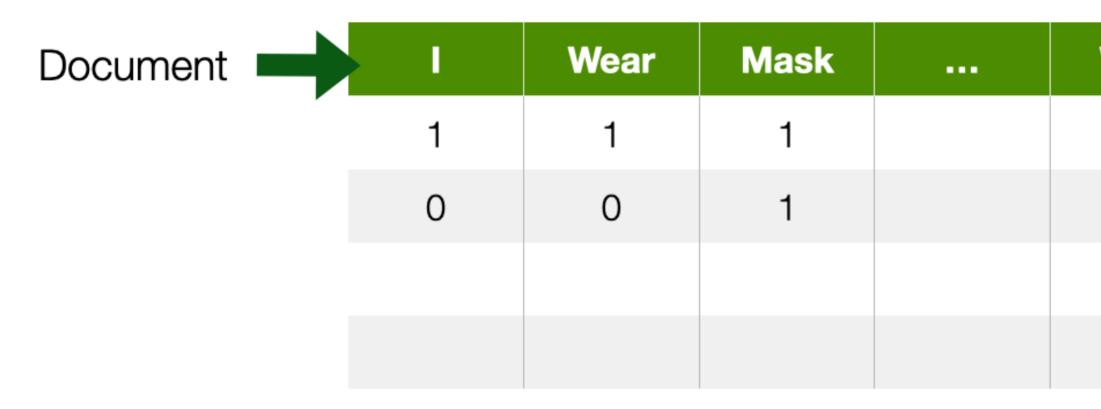
\*\*\*\*\* I wear this mask to sing lullabies to my children ..., 24 May 2015

### By Sir Chubs

Verified Purchase (What is this?)

This review is from: Overhead Rubber Penguin Mask Happy Feet Animal Fancy Dress (Toy)

I wear this mask to sing lullables to my children. They are terrified of the mask. Whenever they protest about their bed time, or ask for too many sweets, I whip on the mask, and they soon know who is the King Penguin.



# More in Module 2

| W(n) | Class    |
|------|----------|
| 0    | Spam     |
| 0    | Not Spam |
|      | Spam     |
|      |          |

### **Data Sources**

| Purposefully<br>Collected Data | <mark>Administrative</mark><br>Data | <mark>Social Data</mark> | <mark>Crowdsourcing</mark>          |
|--------------------------------|-------------------------------------|--------------------------|-------------------------------------|
| Survey                         | Call records                        | Web pages                | Distributed sens                    |
| Census                         | Financial<br>transactions           | Social Media             | Implicit crowd w                    |
| Economic Indicators            | Travel Data                         | Apps                     | Micro-work platf<br>Mechanical Turk |
| Ad-hoc sensing                 | GPS Data                            | Search<br>Engines        |                                     |





### ising

### work (e.g. captcha)

## tforms (e.g Amazon <sup>.</sup>k)

### **Data Sources**

### **Purposefully Collected**

| <mark>Data</mark>                   | Administrative Data                 | Social Data                                  |
|-------------------------------------|-------------------------------------|----------------------------------------------|
| <i>Modality</i> : mostly structured | <i>Modality</i> : mostly structured | <i>Modality</i> : mostly semi-<br>structured |
| <i>Quantity</i> : low               | <i>Quantity</i> : high              | <i>Quantity</i> : low                        |
| <i>Quality</i> : high               | <i>Quality</i> : high               | <i>Quality</i> : low                         |
| Freshness: Iow                      | Freshness: high                     | Freshness: high                              |
| <i>Cost</i> : high                  | <i>Cost</i> : high                  | <i>Cost</i> : low                            |

### **Crowdsourcing**

### Modality: all

*Quantity*: midlow

*Quality*: mid

Freshness: mid

*Cost*: mid-low

# Categories of Machine Learning



# How do machines learn?



## **On Models**

A physical, mathematical, logical, or conceptual representation of a system, entity, phenomenon, or process

- A simple(r) representation of reality helping us understand how something works or will work.
  - Not truthful, just a useful one
- The goal of models is to make a particular part or feature of the world more accessible to understand, define, quantify, visualise, or simulate

## **Examples of models**

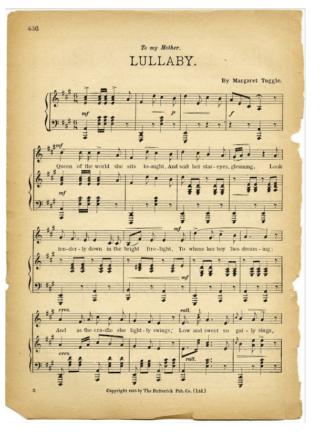
Architecture plans

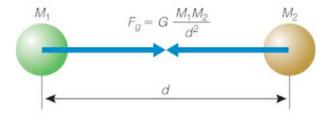
Maps

**Music Sheet** 

Mathematical laws of physics!

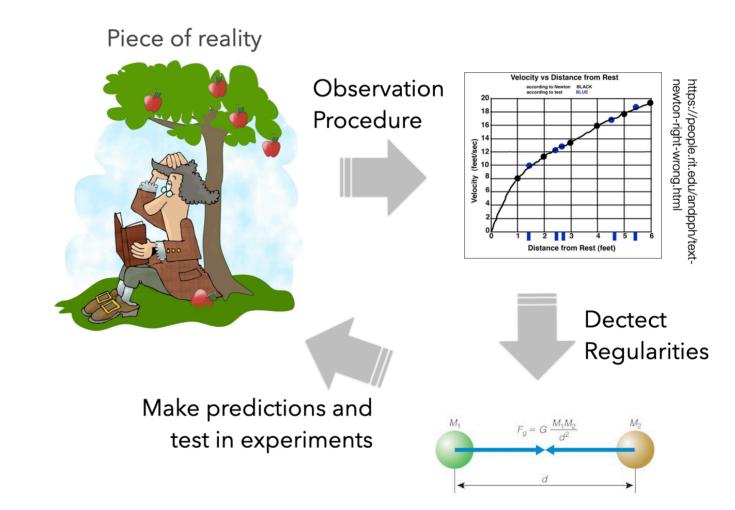
Machine Learning (statistical) Models





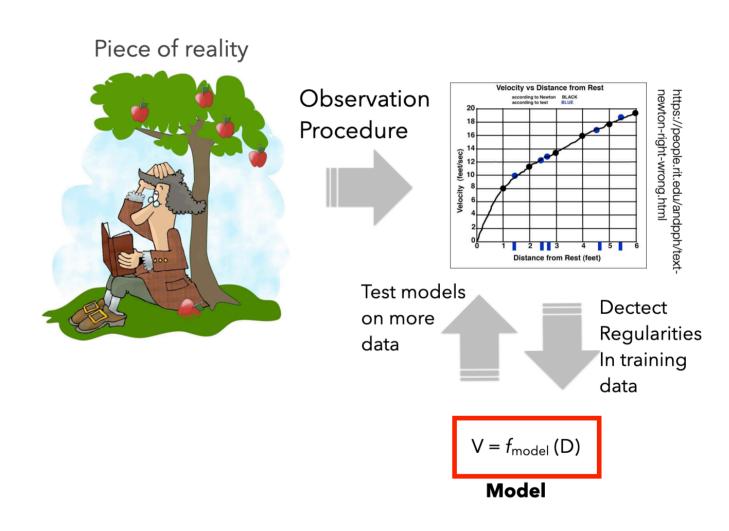
### **Scientific Models**

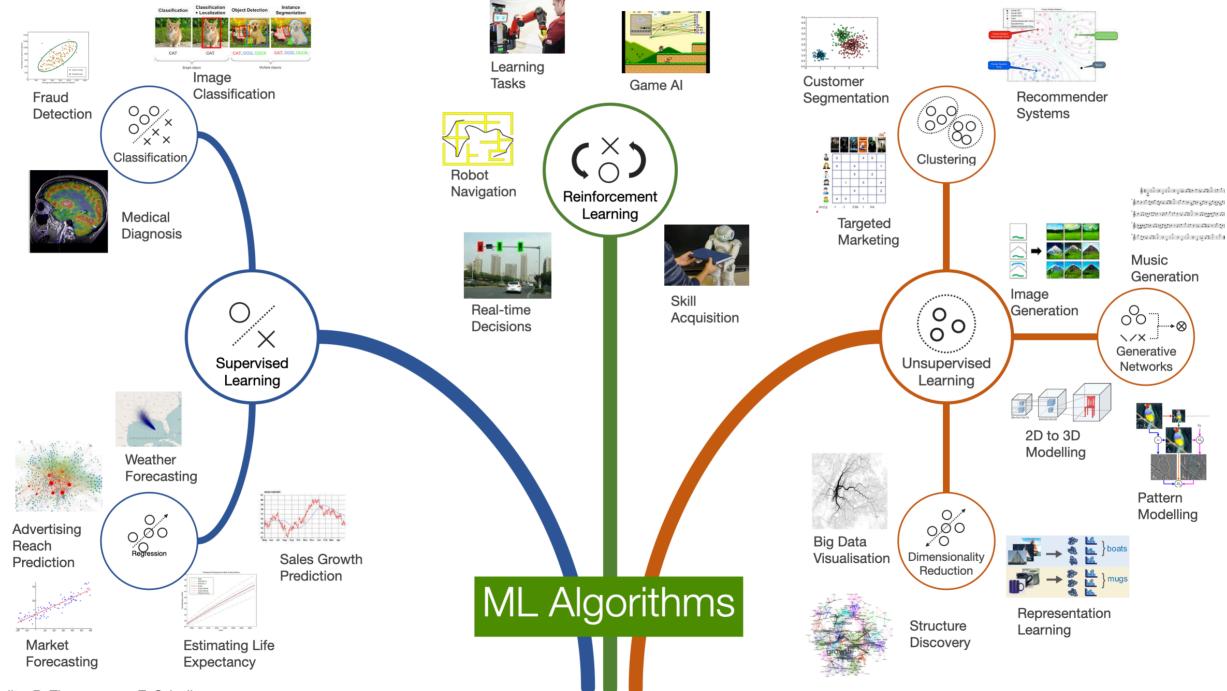
- GOAL: explain reality
- Created to make predictions about the outcomes of future experiments
  - e.g., apples on the moon
- Tested against the **outcome**
- If data from new experiments don't agree, the model has to be modified/extended / refined
  - Falsifiability
- Scientific models should be *small* and *simple*.
- They should generalize phenomena observed in new ways.



### **ML Models**

- GOAL: describe the data
- Designed to capture the *variability* in observational data by exploiting regularities/symmetries/redundancies
- A good ML model doesn't need to explain reality, it just describe data
- They don't need to be simple or transparent, or intelligible. Just accurate
  - Black box
- ML models may be large and complex.
- They should generalize to new data obtained in the same way as the training data
  - Same application context and data acquisition process



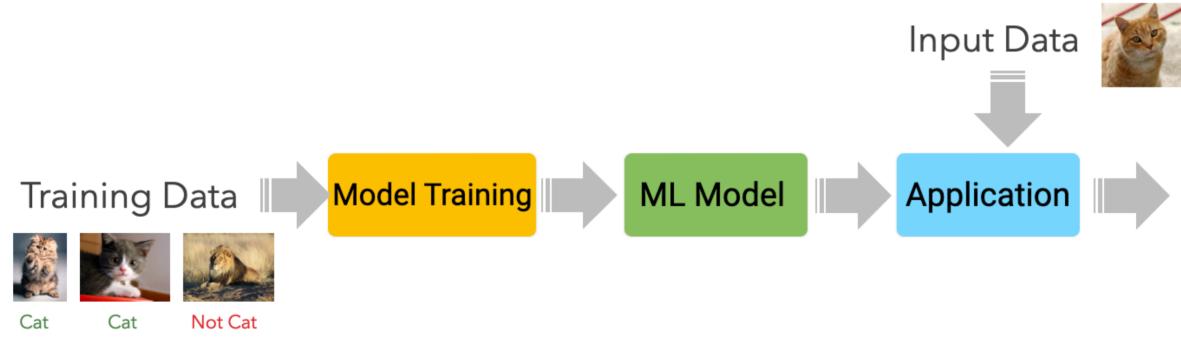


Credits: B. Timmermans, Z. Szlavik

## **Supervised Learning**

- Input: **labeled** data
  - Data + expected prediction
- During training, labels are used to associate patterns with outputs
- Learns how to make inputoutput **predictions**

- Classification
- Regression
- Ranking
- Recommendation

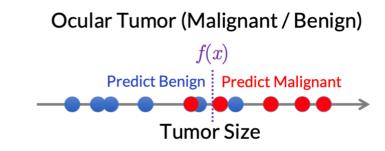


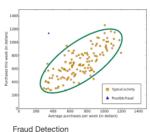
#### n Prediction

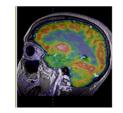


#### Classification

- Learn to output a category label
- Binary
  - e.g. Spam / not Spam, Cat / not cat
- Multi-class
  - e.g. cat, dog, bird







Medical Diagnosis

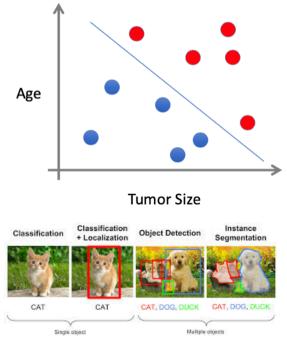
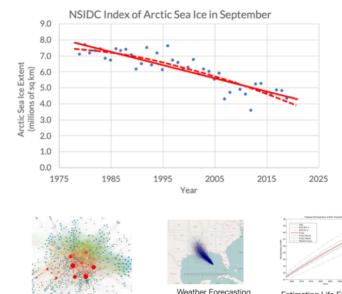


Image Classification

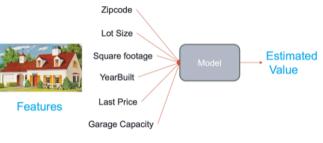
### Regression

- Learn to output one or more numbers
  - e.g., value of a share, number of stars in a review

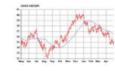


Estimating Life Expectancy

Advertising Reach Prediction



Estimating Home Prices



Sales Growth Prediction



Market Forecastin

# Unsupervised Learning

- Input: unlabeled data
- The machine learns structures (patterns) from the data without human guidance

- Clustering
- Dimensionality
  Reduction (e.g. Large
  - Language Models)
- Anomaly detection

### *ality* (e.g. Large Models) *etection*

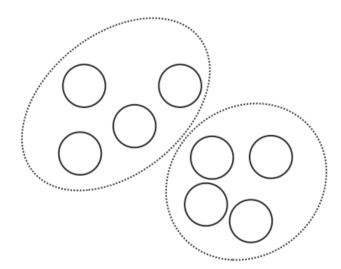


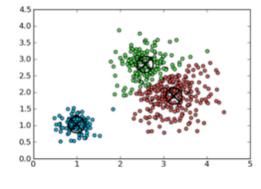






### Clustering





**Customer Segmentation** 

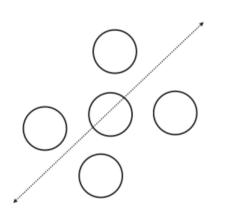


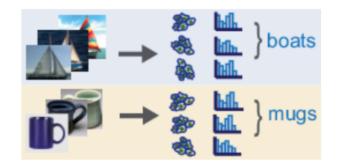




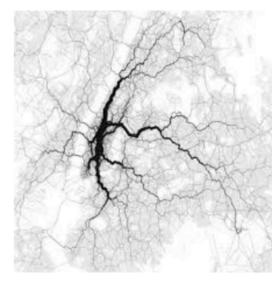
#### Recommender Systems

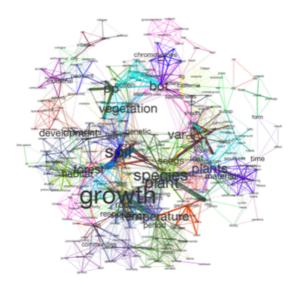
## **Dimensionality Reduction**





Foundational Models For Transfer Learning



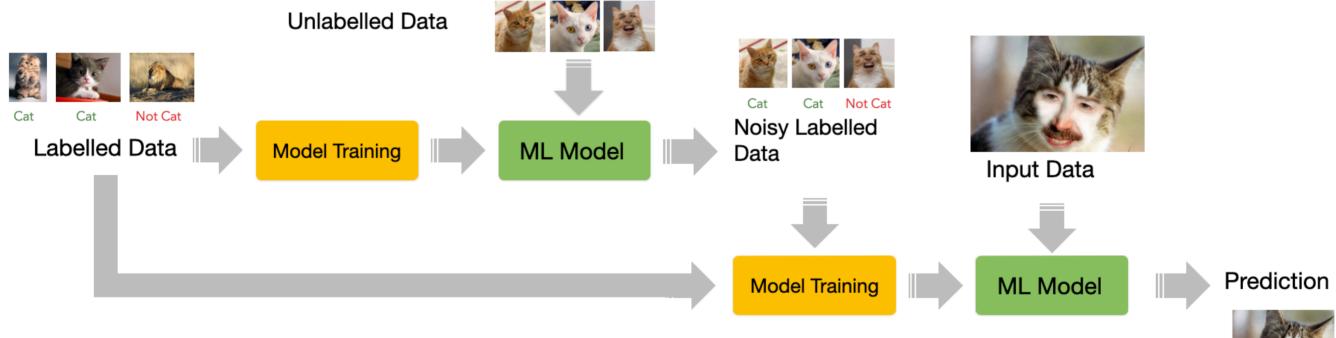


**Big Data Visualisation** 

Structure Discovery

### Semi-Supervised Learning

- Combination of
  supervised and
  unsupervised learning
- Few **labeled** data in the input are used to create
  - noisy labeled data
- With more labeled data, the machine learns how to make input-output
   predictions



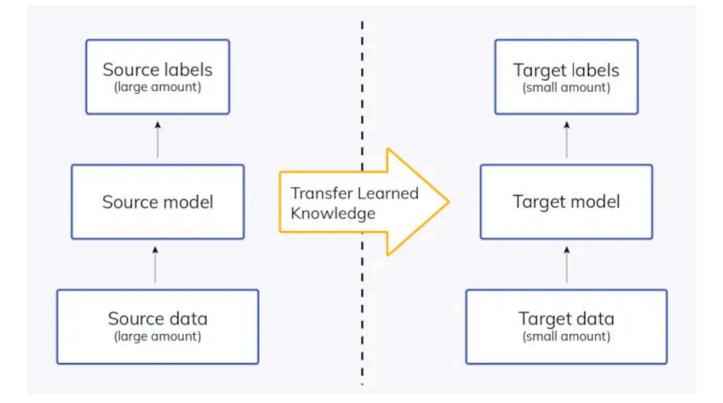
Not Cat

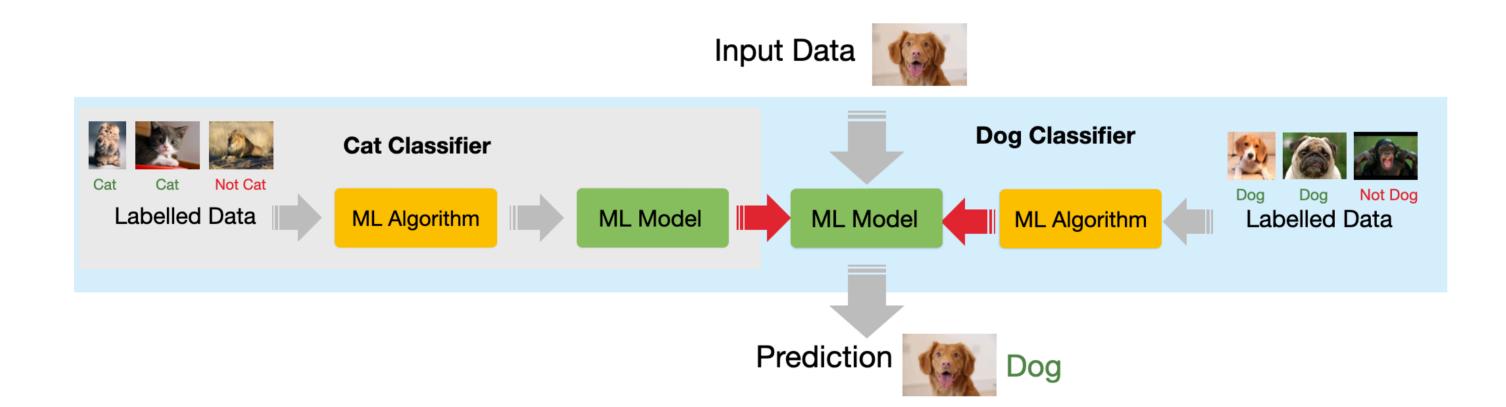
## **Transfer Learning**

Often called fine-tuning

Reuse a model trained for one task is **re-purposed** (tuned) on a different but related task

Useful in tasks lacking abundant data





# **Reinforcement Learning**

- Data about the environment and reward function as input
- The machine can perform actions influencing the environment
- The machine learns behaviours that result in greater reward



**Observation** 

# Don't forget domain expertise

- ML makes some tasks automatic, but we still need our brains
- More in Module 3 and Module
  4

- Defining the prediction task
- Define the evaluation metrics
- Designing features
- Designing inclusions and exclusion criteria for the data
- Annotating (hand-labelling) training (and testing) data
- Select the right model
- Error analysis

#### ediction task Jation metrics

# Machine Learning for Design Lecture 2 Introduction to Machine Learning. Part 2