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How do humansHow do humans
see?see?
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Hubel and Wiesel, 1959Hubel and Wiesel, 1959Hubel and Wiesel, 1959Hubel and Wiesel, 1959
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Neural PathwaysNeural Pathways



@@export_scripts@@

5

Neural CorrelationNeural Correlation
of Objects & Scene Recognitionof Objects & Scene Recognition
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Why is machineWhy is machine
vision hard?vision hard?
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The deformable andThe deformable and
truncated cattruncated cat
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Computer VisionComputer Vision
ChallengesChallenges
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Viewpoint VariationViewpoint Variation
A single instance of an object can be oriented in many
ways to the camera.
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DeformationDeformation
Many objects of interest are not rigid bodies and can
be deformed in extreme ways.
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OcclusionOcclusion
The objects of interest can be occluded. Sometimes only
a tiny portion of an object (as few pixels) could be visible.
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Illumination ConditionIllumination Condition
The effects of illumination can be drastic on the pixel
level.
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Scale variationScale variation

Visual classes often
exhibit variation in
their size

–

Size in the real
world

–

Size in the image–
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Background clutterBackground clutter
The objects of interest may blend into their
environment, making them hard to identify.
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Intra-class variationIntra-class variation

The classes of
interest can often be
relatively broad, such
as chairs.

–

There are many
different types of
these objects, each
with their
appearance.

–
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How ComputerHow Computer
Vision modelsVision models

work?work?
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Course ofCourse of
dimensionalitydimensionality

High dimensionality–
A 1024×768 image has 

!
– d =

786432
A tiny 32×32 image has – d =
1024

Decision boundaries in pixel
space are extremely complex

–

We will need “big” ML models
with lots of parameters

–

For example, linear regressors
need  parameters

–
d
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DownsamplingDownsampling
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FlatteningFlattening
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The “old days”: FeatureThe “old days”: Feature
ExtractionExtraction

FeatureFeature–
A relevant piece of information about the
content of an image

–

e.g., edges, corners, blobs (regions),
ridges

–

A A goodgood feature feature–
Repeatable–
Identifiable–
Can be easily tracked and compared–
Consistent across different scales,
lighting conditions, and viewing angles

–

Visible in noisy images or when only part
of an object is visible

–

Can distinguish objects from one another–
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The “old days”: Feature EngineeringThe “old days”: Feature Engineering
Machine learning models are only as good as the features you
provide

–

To figure out which features you should use for a specific problem–
Rely on domain knowledge (or partner with domain experts)–

Experiment to create features that make machine learning algorithms
work better

–



@@export_scripts@@

24

Feature ExtractionFeature Extraction
TechniquesTechniques
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PerformancePerformance
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Convolutional Neural NetworksConvolutional Neural Networks

CNNs exploit image properties to reduce the number of model parameters drastically–
Feature maps–

Automatically extracted hierarchical features–
Retain spatial association between pixels–

Local interactions–
All processing happens within tiny image windows–
Within each layer, far-away pixels cannot influence nearby pixels–

Translation invariance–
A dog is a dog even if its image is shifted by a few pixels–
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Convolution & FeatureConvolution & Feature
MapsMaps
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What CNNs learn?What CNNs learn?
Deep Visualization Toolbox

https://www.youtube.com/watch?v=AgkfIQ4IGaM
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Feature VisualisationFeature Visualisation
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Network DissectionNetwork Dissection
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Translation InvarianceTranslation Invariance

But not rotation and scaling invariance!
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What aboutWhat about
generalisation?generalisation?
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DataData
AugmentationAugmentation

Generate variations of
the input data

–

To improve
generalisability (out-
of-distribution inputs)

–

Improve invariance
(rotation, scaling,
distortion)

–
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Data AugmentationData Augmentation
Geometric–

Flipping, Cropping,
Rotation, Translation,

–

Noise Injection–
Color space transformation–
Mixing Images–
Random erasing–
Adversarial training–
GAN-based image
generation

–
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Robustness to inputRobustness to input
variationvariation
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Transfer LearningTransfer Learning
ProblemProblem: training custom ML
models requires huge datasets

–

Transfer learningTransfer learning: take a model
trained on the same data type for a
similar task and apply it to a
specialised task using our custom
data.

–

Same dataSame data: same data modality.
same types of images (e.g.,
professional pictures vs. Social
media pictures)

–

Similar tasksSimilar tasks: if you need a new
object classification model, use a
model pre-trained for object
classification

–
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AdvancedAdvanced
Computer VisionComputer Vision

TechniquesTechniques
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Generative Adversarial NetworksGenerative Adversarial Networks

Learn patterns from the training dataset and create new images that have a similar
distribution of the training set

–

Two deep neural networks that compete with each other–
The generatorgenerator tries to convert random noise into observations that look as if
they have been sampled from the original dataset

–

The discriminatordiscriminator tries to predict whether an observation comes from the
original dataset or is one of the generator’s forgeries

–
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The generatorgenerator’s architecture
looks like an inverted CNN
that starts with a narrow
input and is upsampled a few
times until it reaches the
desired size

– The discriminatordiscriminator

’s model is a typical
classification neural network
that aims to classify images
generated by the generator
as real or fake

–
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Which face is real?

https://www.whichfaceisreal.com/


@@export_scripts@@

44

Image super-resolutionImage super-resolution
GANGAN

– A good technical summary

https://blog.paperspace.com/image-super-resolution/
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ML-generated painting
sold for $432,500

–

The network trained on
a dataset of 15,000
portraits painted
between the
fourteenth and
twentieth centuries

–

Network “learned” the
style and generated a
new painting

–
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Neural Style TransferNeural Style Transfer
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Text-To-Image GenerationText-To-Image Generation
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DesignDesign Computer ScienceComputer Science
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Image-to-ImageImage-to-Image
GenerationGeneration
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Synthetic VideoSynthetic Video
GenerationGeneration

Generated from Synthesia.io

https://www.synthesia.io/
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Deep FakesDeep Fakes
Very realistic Tom
Cruise Deepfake

https://www.youtube.com/watch?v=iyiOVUbsPcM
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CreditsCredits

 course - Matthew O’Toole.

Grokking Machine Learning. Luis G. Serrano. Manning, 2021

. Eric Eaton, Dinesh
Jayaraman.

Deep Learning Patterns and Practices - Andrew Ferlitsch,
Maanning, 2021

Machine Learning Design Patterns - Lakshmanan, Robinson,
Munn, 2020

Deep Learning for Vision Systems. Mohamed Elgendy.
Manning, 2020

CMU Computer Vision

[CIS 419/519 Applied Machine Learning]

http://16385.courses.cs.cmu.edu/spring2022/
https://www.seas.upenn.edu/~cis519/spring2020/

