Machine Learning for Design

Lecture 6
Natural Language Processing - Part 2

Previously on ML4D

- Machine Learning: Observe pattern of features and attempt to imitate it in some way

- A feature is an individual measurable property or characteristic of a phenomenon
- Choosing informative, discriminating, and independent features is essential for a well-working ML
- Features
- Images \rightarrow pixel values (e.g. B/W, RGB)
- Numbers \rightarrow OK
- What about text?

Textual Documents

- A sequence of alphanumerical characters
- Short: e.g. tweets
- Long: e.g Web documents, interview transcripts
- Features are (set of) words
- Words are also syntactically and semantically organised
- Feature values are (sets of) words occurrences
- Dimensionality \rightarrow at least dictionary size

,

children ..., 24 May 2015

By Sir Chubs

Verified Purchase (What is this?)
This review is from: Overhead Rubber Penguin Mask Happy Feet Animal Fancy Dress (Toy)
I wear this mask to sing lullabies to my children. They are terrified of the mask. Whenever they protest about their bed time, or ask for too many sweets, I whip on the mask, and they soon know who is the King Penguin.

Main types of NLP Tasks

- Label (classify) a region of text
- e.g. part-of-speech tagging, sentiment classification, or named-entity recognition
- Link two or more regions of text
- e.g. coreference
- are two mentions of a realworld thing (e.g. a person, place) in fact referencing the same real-world thing?
- Fill in missing information (missing words) based on context

Language Representation

- Language = vocabulary and its usage in a specific context captured by textual data

What is a language model?

- A collection of statistics learned over a particular language
- Almost always empirically derived from a text corpora

What are language models used for?

- Measure how important (or descriptive) a word is in a given document collection
e.g., find the set of words that best describe multiple clusters (see Assignment 2)
- Predict how likely a sequence of words is to occur in a given context
e.g., find the words that are more likely to occur next

What is the issue with word representation?

- Words are discrete symbols
- Machine-learning algorithms cannot process symbolic information as it is
- We need to transform the text into numbers
- But we also need a way to
 express relationships between words!

A simple approach

- Assign an incremental number to each word
- $c a t=1$
- $d o g=2$
- pizza $=3$
- Problem: there is no notion of similarity
- Is a cat as semantically close (similar) to a dog as a dog is to a pizza
- Also, no arithmetic operations
- Does it make sense to calculate $d o g-c a t$ to establish similarity?

Word Embeddings

- Embed (represent) words in a numerical ndimensional space
- Essential for using machine learning approaches to solve NLP tasks
- They bridge the symbolic (discrete) world of words with the numerical (continuous) world of machine learning models

Approach 1

Assign numbers to words, and put semantically related words close to each other

- We can now express that $d o g$ is more related to cat than to pizza
- But is pizza more related to $d o g$ than to cat?

Approach 2

Assign multiple numbers (a vector) to words

$$
\begin{array}{ll}
\text { cat } & =[4,2] \\
\text { dog } & =[3,3] \\
\text { pizza } & =[1,1]
\end{array}
$$

- We can calculate distance (and similarity)
- e.g. Euclidean, or Cosine (angles)
- But what is the meaning of an axis?

One-Hot Encoding

- Each word in the vocabulary is represented by a onebit position in a HUGE (sparse) vector
- Vector dimension = size of the dictionary
- There are an estimated 13 million tokens for the English language

$$
\begin{aligned}
\text { cat } & =[0,0,0,0,0,0,0,0,0,0,1,0,0,0, \ldots, 0] \\
\text { dog } & =[0,0,0,0,0,0,0,1,0,0,0,0,0,0, \ldots, 0] \\
\text { pizza } & =[1,0,0,0,0,0,0,0,0,0,0,0,0,0, \ldots, 0]
\end{aligned}
$$

- Problems with one-hot encoding:
- The size of the vector can be huge
- Do you Remember Zip’s law?
- Easy to reach 10^{6} words
- But we can use stemming, lemmatisation, etc
- Still, no notion of similarity or words relationship

Finnish

German

- Each word is an independent, discrete entity

Independent and identically distributed words assumption

- The simplest language models assume that each word in a text appears independently of the others
- The text is modeled as generated by a sequence of independent events
- The probability of a word can be estimated as the number of times a word appears in a text corpus
- But high probability does not mean important (or descriptive)

Back to the term-document matrix

Document

I	Wear	Mask	\ldots	W(n)	Class	
1	1	1	1		0	Spam
0	0	1		0	Not Spam	
					Spam	

- How to measure the importance of words?

Term frequency $t f$

- Raw frequency
$\operatorname{tf}(t, d)=f_{t, d}$
- Log normalisation

$$
\operatorname{tf}(t, d)=\log \left(1+f_{t, d}\right)
$$

- Measuring the importance of a word t to a document d
- The more frequent the word, the more important it is to describe the document
- Normalised Frequency

$$
\operatorname{tf}(t, d)=0.5+\frac{0.5 f_{t, d}}{f_{\max }(d)}
$$

Inverse document frequency $I D F$
 $\operatorname{IDF}(t, D)=$ $\log \frac{N}{|d \in D: t \in d|}$
 - Measuring the importance of a word t to a document collection D
 - Rare terms are more important than common terms

$$
\begin{aligned}
& T F-I D F \\
& \operatorname{tfIDF}(t, d, D)= \\
& t f_{t, d} \times I D F_{t, D}
\end{aligned}
$$

- Scaling a word's importance (in a document) based on both its frequency and its importance in the collection

N-gram language models

N-gram language models

- Calculate the conditional probabilities among adjacent words
- Given the word w, what is the probability of the next word $w+1$

$$
p(w \mid \text { eat })
$$

eat on	0.16	eat Thai	0.03
eat some	0.06	eat breakfast	0.03
eat lunch	0.06	eat in	0.02
eat dinner	0.05	eat Chinese	0.02
eat at	0.04	eat Mexican	0.02
eat a	0.04	eat tomorrow	0.01
eat indian	0.04	eat dessert	0.007
eat today	0.03	eat British	0.001

- e.g., given eat, eat on vs. eat British
- bi-grams $\rightarrow 2$ words, 3grams $\rightarrow 3$ words

N-gram language models

- More accurate
- The probabilities depend on the considered context
- The model accuracy increases with N
- The syntactic/semantic contexts are better modeled
- Grammatical rules
- e.g., an adjective is likely to be followed by a noun
- Semantic restrictions
- e.g., Eat a pear vs. Eat a crowbar
- Cultural restrictions
- e.g., Eat a cat

Limits of \mathbf{N}-grams-based Language Model

- Conditional probabilities are difficult to estimate
- For dictionary contains D terms there are D^{N} N -grams (30K words, 900M bi-grams)
- the corpus should be billions of documents big for a good estimation
- They do not generalize to unseen words sequences

Representing words by their contexts

- Distributional semantics: A word's meaning is given by the words that frequently appear close-by
- When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size window)
- The contexts in which a word appears tell us much about its meaning
"You shall know a word by the company it keeps" - The distributional hypothesis, John Firth (1957)
\qquad

- Contexts
- 1 A bottle of ___ is on the table
- 2 Everybody likes
- 3 Don't have before you drive
- 4 We make__out of corn
- What other words fit into these contexts?

Distributional Word Embeddings

$$
\begin{aligned}
c a t & =[0.7,0.5,0.1] \\
\operatorname{dog} & =[0.8,0.3,0.1] \\
\text { pizza } & =[0.1,0.2,0.8]
\end{aligned}
$$

- Define dimensions that allow expressing a context
- The vector for any particular word captures how strongly it is associated with each context
- For instance, in a 3 dimensional space, the axis could have the semantic meaning
- x-axis represents some concept of "animal-ness"
- z-axis corresponds to "foodness"

Distributional Word Embeddings

$$
\begin{aligned}
c a t & =[0.7,0.5,0.1] \\
\operatorname{dog} & =[0.8,0.3,0.1] \\
\text { pizza } & =[0.1,0.2,0.8]
\end{aligned}
$$

- Defining the axes is difficult
- How many?
- A lot less than the size of the dictionary (dense vectors)
- But at least ~100dimensional, to be effective
- GPT-2 has ~1600, GPT-3 12288.
- How to assign values associated with the vectors?
- Tens of millions of numbers to tweak

\square nounverbadjective
adverb
pronoun
...over 200 years the common crane plays a very important part.
Lesser sandhill crane A. c. canadensis Cuban sandhill... ...maps Audio recordings of Common crane on Xeno-canto .o

In 2016 a wild crane was born in Wales Wh $_{3}$ for...
 - - The crane there is described as a...

God that he needed a crane to construct the Ark ir

-...of a double wheel treadwheel crane is in use at Prague.

How to calculate Word Embeddings?

- With machine learning models
- Advanced topic
- Several courses in the IPD master :)

Ok, just a sneak peak

- SKIPGRAM: Predict the probability of context words from a centre word
- Input: one-hot vector of the centre word
- the size of the vocabulary
- Output: one-hot vector of the output words
- the probability that the output word is selected to be in the context window
- Embeddings: lower-dimensional representation of context of co-occurence

One-hot input vector

Output Layer

Softmax Classifier

A ' 1 ' in the position corresponding to the word "ants"

Hidden Layer
Input Vector

Σ position

Using Word Embeddings

How can embeddings be used with NLP Models?

- Word embeddings are trained from a corpus
- And then they can be reused!
- 3 scenarios

Scenario 1

- Train word embeddings and your model at the same time using the train set for the task

Scenario 2: Fine-Tuning

- Initialise the model using the pre-trained word embeddings
- e.g., train on Wikipedia, or large Web corpora
- Keep the embedding fixed while training the model for the task
- Another example of transfer learning

Scenario 3: Adaptation

- The embeddings are adapted while the downstream model is trained, the train set for the task
- Same as Scenario 2, but the embeddings are now more close to the words distribution in your training set

Evaluating Word Embeddings

How to evaluate word vectors?

- Intrinsic: evaluation on a specific/intermediate subtask (e.g. analogy)
- Fast to compute
- It helps to understand that system
- Not clear if helpful unless correlation to the actual task is established
- Extrinsic: evaluation of a real task
- It can take a long time to compute the accuracy
- Unclear if the subsystem is the problem or if it is an interaction with other subsystems

Intrinsic evaluation

- Word vector analogies
$a: b=c: ?$
man : woman =
king :?

Intrinsic evaluation

- Find a word such that the vector is closest (cosine similarity) to vec[man] -

Gender relation

Company - CEO

Countries and their capital

Comparatives and Superlatives

There are problems, of course

- By exploring the semantic space, you can also find analogies like
- Thirsty is to drink as tired is to drunk
- Fish is to water as bird is to hydrant

Biases in word vectors might leak through to produce unexpected, hard-to-predict biases

- man is to woman as
computer programmer is to
- woman is to man as computer programmer is to
- man is to genius as woman is to
- woman is to genius as man is to
- man is to woman as computer programmer is to homemaker
- woman is to man as computer programmer is to mechanical engineer
- man is to genius as woman is to muse
- woman is to genius as man is to geniuses

Machine Learning for Design

Lecture 6
Natural Language Processing - Part 2

Credits

CIS 419/519 Applied Machine Learning. Eric Eaton, Dinesh Jayaraman. https://www.seas.upenn.edu/~cis519/spring2020/

EECS498: Conversational Al. Kevin Leach.
https://dijkstra.eecs.umich.edu/eecs498/
CS 4650/7650: Natural Language Processing. Diyi Yang. https://www.cc.gatech.edu/classes/AY2020/cs7650_spring/

Natural Language Processing. Alan W Black and David Mortensen. http://demo.clab.cs.cmu.edu/NLP/

IN4325 Information Retrieval. Jie Yang.
Speech and Language Processing, An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Third Edition. Daniel Jurafsky, James H. Martin.

Natural Language Processing, Jacob Eisenstein, 2018.

