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Types of — Categorical

Features / Label - Named Data

Values — Can take numerical
values, but no
mathematical meaning

— Numerical
- -Measurements

— Take numerical values
(discrete or
continuous)



Categorical Nominal Categorical Ordinal

— No order — Order

— No direction — Direction

— e.g. marital status, - e.d., letter grades
gender, ethnicity (A,B,C,D), ratings

(dislike, neutral, like)



Numerical Interval Numerical Ratio

— Difference between — Difference between
measurements measurements

— No true zero or fixed - True zero exists
beginning - e.qg., temperature (K),

- e.g., temperature (C age, height

or F), 1Q, time, dates



Data Preparation
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Real Data
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— Data is rarely “clean”

— Approximately 50-80% of the time is
spent on data wrangling

— probably an under-estimation

— Having good data with the correct
features is critical



— 3 issues to deal with:

- Encoding features as numerical
values

— Transforming features to make ML
algorithms work better

— Dealing with missing feature values



Data Encoding
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Numerical Features

— Each feature is assigned its own value in
the feature space

FALSE

TRUE 21 * 1 21

TRUE 34 1 34
FALSE 9 0 9



Categorical Features

— Why not encode each value as an integer?

— A naive integer encoding would create
an ordering of the feature values that
does not exist in the original data

— You can try direct integer encoding if a
feature does have a natural ordering
(ORDINAL e.g. ECTS grades A-F)
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One-hot Encoding

— Each value of a categorical feature
gets its own column

Status Status Gender
Single Married (o)
1 0] 0

Single M 1 0

Married F * 0 1 0 1 0
Single O 1 0 0 0 1
Single M 1 0 1 0 0
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Ordinal Features

— Convert to a number, preserving the order
- [low, medium, high| = |1, 2, 3]

— Encoding may not capture relative differences

Health Status | Blood Pressure
4

5

m Blood Pressure

Good Very good

Very Good Excellent »

N B~ ®

Normal Good 3

Bad Normal 1 1



Data Quality Issues



Incorrect feature values

— Typos

- e.g., color = “blue”, “green”, “gren”, “red”
— Garbage

- e.g., color = “WEr--4ij”

— Inconsistent spelling (e.g., “color”, “colour”) or
capitalization

— Inconsistent abbreviations (e.qg., “Oak St.”, “Oak
Street”)
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Missing labels (classes)

— Delete instances if only a few are
missing labels

— Use semi-supervised learning
techniques

— Predict the missing labels via self-
supervision



Merging Data
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— Data may be split across different files (or systems!

— Jjoin based on a key to combine data into one table
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Problems During — Encoding issues

Merge — Inconsistent data
formats or

— Inconsistent data terminology

— Same instance key — Key aspects

with conflicting labels mentioned in cell
- Data duplication comments or auxiliary
. files

— Data size

— Data might be too big
to integrate
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Dealing With Missing
Values

sepal_lenght | sepal_width | petal_lenght | petal_width m

Iris-setosa
7.0 NaN 4.7 1.4 Iris-versicolor
5.7 2.8 4.1 1.3

6.3 NaN 6.0 2.5 Iris-virginica



Why can data be missing?

— "Good" reason: not all instances are
meant to have a value

— Otherwise
— Technical issues (e.g. Data Quality)



Dealing with missing data

— Delete features with mostly missing
values (columns)

- Delete instances with missing features
(rows)

— Only if rare
- Feature imputation
— “fill in the blanks"



Feature Imputation

- Replacing with a constant
— the mean feature value (numerical)
— the mode (categorical or ordinal)

- “flag” missing values using out-of-range
values

— Replacing with a random value

— Predicting the feature value from other
features
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What if our features look like this?
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— What if the features have - Values spread strongly

different magnitudes? affect many models:

— Does it matter if a feature — linear models (linear
IS represented as meters SVC, logistic
or millimetres? regression, .. .)

— What if there are outliers? — neural networks

— models based on
distance or similarity
(e.g. KNN )

— |t does not matter for
most tree-based
predictors



Feature Normalisation

— Needed for many algorithms to work
properly
— Or to speed up training



Min/Max Scaling
_ f_fmam

fnew - fma:c — fmin

— Values scaled
between O and 1

~ finae @Nd fin Need
to be known In
advance
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Standard Scaling

fnew o f ],f,llf

— Rescales features to
have zero mean and
unit variance

— Qutliers can cause
problems
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Scaling to unit length

.z
wnew—m

— Typical for textual
document
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Other features
transformation

— Improve performance
by applying other
numerical
transformation

— logarithm, square
root, . ..

- TF-IDF

— |t depends a lot on
the data!

— Trial and error
— Exploration
— Intuition

33
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Feature Selection and
Removal

— Problem: the number of features
may be very large

— Important information is
drowned out

— Longer model training time

— More complexity — bad for
generalization

— Solution: leave out some h
features
humpback leopard
i whale
— But which ones?

— Feature selection methods can
find a useful subset

‘ . -
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Feature Selection

— ldea: find a subspace that retains most of the
information about the original data

— Pretty much as we were doing with word
embeddings

— PRO: fewer dimensions make for datasets that are

easier to explore and visualise, and faster training of
ML algorithms

— CONS: drop in prediction accuracy (less information)

— There are many different methods, Principal
Component Analysis is a classic



Principal Component
Analysis

— ldea: features can be highly
correlated with each other

— redundant information

— Principal components: new
features constructed as linear
combinations or mixtures of the
initial features

— The new features (i.e., principal
components) are uncorrelated

— Most of the information within the
initial features is compressed into
the first components
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Orthogonal to all previous
components

Direction of the largest

variance in the residual sub- E3E

2nd principal )
component A
IR s 1<t principal

.48 component

Direction of the largest
variance




Principal
Component
Analysis

— Orthogonal projection of data
onto lower-dimension linear
space that:

— Maximizes the variance of
projected data (purple line)

— Minimizes mean squared
distance between data
point and projections (sum
of red lines)

|||||||

----------
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Dimensionality
Reduction

— Use the PCA
transformation of the
data instead of the
original features

— Ignore the components

of
on
CO

ess significance (e.g.,
y pick the first three

mponents)

Principal Components

— PCA keeps most of the
variance of the data

— S0, we are reducing the
dataset to features that
retain meaningful
variations of the dataset
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And now, let's

Smell Pittsburgh
Credits: Yen-Chia Hsu
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Credits

CIS 419/519 Applied Machine Learning.
Eric Eaton, Dinesh Jayaraman.

Component Analysis (PCA).


https://www.seas.upenn.edu/~cis519/spring2020/
https://builtin.com/data-science/step-step-explanation-principal-component-analysis

