Machine Learning for Design Lecture 7 **Design and Develop Machine Learning** Models - Part 1

Previously on ML4D

CRISP-DM Methodology

Data

Types of Features / Label Values

- Categorical

- Named Data
- Can take numerical values, but no mathematical meaning

- Numerical

- - Measurements
- Take numerical values (discrete or continuous)

Categorical Nominal

- No order
- No direction
- e.g. marital status, gender, ethnicity

Categorical Ordinal

- Order
- Direction
- e.g., letter grades
 (*A*,*B*,*C*,*D*), ratings
 (*dislike*, *neutral*, *like*)

Numerical Interval

- Difference between measurements
- No true zero or fixed beginning
- e.g., temperature (C or F), IQ, time, dates

Numerical Ratio

- Difference between measurements
- True zero exists
- e.g., temperature (K),
 age, height

Data Preparation

Ideal Data

Real Data

MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	•••	MoSold	YrSold	SaleType	SaleCondition	SalePrice
20	RL	Catego	rical	Pave	Ord	inal feat	ures	5	2 008	Nume	ric Normal	174000
180	RM	featur	es ³⁶⁷⁵	Pave	NaN	Reg		5	2 006	featur	Normal	145000
60	FV	72.0	8640	Pave	NaN	Reg	•••	6	2 010	Con	Normal	215200
20	RL	84.0	11670	Pave	NaN	IR1	•••	3	2007	WD	Normal	320000
60	RL	Looks n	umeric	. but is	NaN	IR2	•••	4	2009	ConLw	Normal	212000
80	RL	actual	v categ	orical	NaN	Reg	•••	6	2008	WD	Normal	168500
60	TI	70.0	11218	Pave	NaN	Reg	•••	5	2010	WD	Normal	189000
80	RL	85.0	13825	Pave	NaN	Reg	•••	12	2008	WD	Normal	140000
60	RL	NaN	13031	Pave	NaN	IR2		7	2006	WD	Normal	187500

- Data is rarely "clean"
- Approximately 50-80% of the time is spent on data wrangling
 - probably an under-estimation
- Having good data with the correct features is critical

- 3 issues to deal with:
 - Encoding features as numerical values
 - Transforming features to make ML algorithms work better
 - Dealing with **missing feature** values

Data Encoding

Numerical Features

 Each feature is assigned its own value in the feature space

IsAdult	Age	IsAdult	Age
FALSE	17	0	17
TRUE	21	1	21
TRUE	34	1	34
FALSE	9	0	9

Categorical Features

- Why not encode each value as an integer?
 - A naive integer encoding would create an ordering of the feature values that *does not exist in the original data*
 - You can try direct integer encoding if a feature *does have a natural ordering* (ORDINAL e.g. ECTS grades A–F)

One-hot Encoding

Each value of a categorical feature gets its own column

Status	Gender	Status Single	Status Married	Gender M	Gender F	Gende O
Single	М	1	0	1	0	0
Married	F	0	1	0	1	0
Single	0	1	0	0	0	1
Single	М	1	0	1	0	0

Ordinal Features

- Convert to a number, preserving the order
 - $[low, medium, high] \rightarrow [1, 2, 3]$
- Encoding may not capture relative differences

Heal	th Status	Blood Pressure
(Good	Very good
Ver	ry Good	Excellent
Ν	Iormal	Good
	Bad	Normal

Data Quality Issues

Incorrect feature values

- Typos
 - e.g., color = "blue", "green", "gren", "red"
- Garbage
 - e.g., color = "w r--śïį"
- Inconsistent spelling (e.g., "color", "colour") or capitalization
- Inconsistent abbreviations (e.g., "Oak St.", "Oak Street")

Missing labels (classes)

- Delete instances if only a few are missing labels
- Use semi-supervised learning techniques
- Predict the missing labels via selfsupervision

Merging Data

- Data may be split across different files (or systems!)
 - join based on a key to combine data into one table

			track	S						albums			artists	
• • • Home E7	□ 日 い・び マ Insert Page Layout Formulas > × ✓ ƒx 1	s Data Revie	🚹 Track			Q- Search Sheet	(1) ↓ ▲+ Share ↓	• • • Home C2	Insert Pa	の・び ≂ ₪ Album Q×Seard ige Layout Formulas Data R fx 1	ch Sheet 🙂 🕲 eview View ᅪ Share 🗸	 ✓ ● ● Home I G5 ◆ 	IÎ — ≫ I Q-Searc nsert Page Layout Formula: X ✓ fx	h Sheet ©∵ s Data >> ≟+ Share ↓
	A B	С	DE	F	G	Н			А	В	С	D	A B	C D
1 id	name	album_id	media_type_id genre_	id composer	milliseconds	bytes	unit_price	ı id	1	title	artist_id	1 id	name	
2	1 For Those Ab		1 1	1 Angus Young	343719	11170334	0.99	2		1 For Those About To Ro	1	2	1 AC/DC	
3	2 Balls to the V		2 2	1	342562	5510424	0.99	3		2 Balls to the Wall	2	3	2 Accept	
4	3 Fast As a Sha		3 2	1 F. Baltes, S. k	230619	3990994	0.99	4		3 Restless and Wild	2	4	<mark>3</mark> Aerosmith	
5	4 Restless and		3 2	1 F. Baltes, R.A	252051	4331779	0.99	5		4 Let There Be Rock	1	5	4 Alanis Moris	sette
6	5 Princess of th		3 2	1 Deaffy & R.A	375418	6290521	0.99	6		5 Big Ones	3	6	5 Alice In Chair	าร
7	6 Put The Finge		1 1	1 Angus Young	g 205662	6713451	0.99	7		6 Jagged Little Pill	4	7	7 Apocalyptica	
8	7 Let's Get It U		1 1	1 Angus Young	g 233926	7636561	0.99	8		7 Facelift	5	8	8 Audioslave	
9	8 Inject The Ve		1 1	1 Angus Young	g 210834	6852860	0.99	9		9 Plays Metallica By Fou	7	9	9 BackBeat	
10	9 Snowballed		1 1	1 Angus Young	g 203102	6599424	0.99	10	1	0 Audioslave	8	10	10 Billy Cobham	1
11	10 Evil Walks		1 1	1 Angus Young	g 263497	8611245	0.99	11	1	1 Out Of Exile	8	11	11 Black Label S	ociety
12	11 C.O.D.		1 1	1 Angus Young	g 199836	6566314	0.99	12	1	2 BackBeat Soundtrack	9	12	12 Black Sabbat	h
13	12 Breaking The		1 1	1 Angus Young	263288	8596840	0.99	13	1	3 The Best Of Billy Cobha	10	13	13 Body Count	
14	13 Night Of The		1 1	1 Angus Young	205688	6706347	0.99	14	1	4 Alcohol Fueled Brewta	11		rtist +	
15	14 Spellbound		1 1	1 Angus Young	270863	8817038	0.99	10	Album +	C Alashal Fueled Browto	11	Ready		+ 200%
Ready	Track +]	+ 200%	Ready			+ 200%			

Problems During Merge

- Inconsistent data
 - Same instance key with conflicting labels
 - Data duplication
- Data size
 - Data might be too big to integrate

- Encoding issues
 - Inconsistent data formats or terminology
 - Key aspects mentioned in cell comments or auxiliary files

Dealing With Missing Values

sepal_lenght	sepal_width	petal_lenght	petal_width	Class
5.0	3.3	1.4	0.2	lris-setosa
7.0	NaN	4.7	1.4	Iris-versicolor
5.7	2.8	4.1	1.3	
6.3	NaN	6.0	2.5	Iris-virginica

Why can data be missing?

- "Good" reason: not all instances are meant to have a value
- Otherwise
 - Technical issues (e.g. Data Quality)

Dealing with missing data

- Delete features with mostly missing values (columns)
- Delete instances with missing features (rows)
 - Only if rare
- Feature imputation
 - "fill in the blanks"

Feature Imputation

- Replacing with a constant

- the *mean* feature value (numerical)
- the *mode* (categorical or ordinal)
- "flag" missing values using out-of-range values
- Replacing with a random value
- Predicting the feature value from other features

What if our features look like this?

- What if the features have different magnitudes?
- Does it matter if a feature is represented as meters or millimetres?
- What if there are outliers?

- Values spread strongly affect many models:
 - linear models (linear SVC, logistic regression, . . .)
 - neural networks
 - models based on
 distance or similarity
 (e.g. kNN)
- It does not matter for most tree-based predictors

Feature Normalisation

- Needed for many algorithms to work properly
 - Or to speed up training

Min/Max Scaling $f_{new} = rac{f - f_{max}}{f_{max} - f_{min}}$

- Values scaled
 between 0 and 1
- f_{max} and f_{min} need to be known in advance

Standard Scaling
$$f_{new} = rac{f - \mu_f}{\sigma_f}$$

- Rescales features to have zero mean and unit variance
- Outliers can cause problems

Scaling to unit length

$$x_{new} = rac{x}{|x|}$$

 Typical for textual document

Other features transformation

- Improve performance by applying other numerical transformation
 - logarithm, square
 root, . . .
 - TF-IDF

- It depends a lot on the data!
 - Trial and error
 - Exploration
 - Intuition

Feature Selection and Removal

- Problem: the number of features may be very large
 - Important information is drowned out
 - Longer model training time
 - More complexity \rightarrow bad for generalization
- Solution: leave out some features
 - But which ones?
- Feature selection methods can find a useful subset

Feature Selection

- Idea: find a subspace that retains most of the information about the original data
 - Pretty much as we were doing with *word* embeddings
- **PRO**: fewer dimensions make for datasets that are easier to explore and visualise, and faster training of ML algorithms
- **CONS**: drop in prediction accuracy (less information)
- There are many different methods, Principal Component Analysis is a classic

Principal Component Analysis

- Idea: features can be highly correlated with each other
 - redundant information
- Principal components: new features constructed as *linear combinations* or *mixtures* of the initial features
- The new features (i.e., principal components) are **uncorrelated**
 - Most of the information within the initial features is compressed into the first components

Principal Component Analysis

- Orthogonal projection of data onto lower-dimension linear space that:
 - Maximizes the variance of projected data (purple line)
 - Minimizes mean squared distance between data point and projections (sum of red lines)

Dimensionality Reduction

- Use the PCA transformation of the data instead of the original features
- Ignore the components of less significance (e.g., only pick the first three components)

- PCA keeps most of the variance of the data
- So, we are reducing the dataset to features that retain meaningful variations of the dataset

And now, let's Smell Pittsburgh Credits: Yen-Chia Hsu

Machine Learning for Design Lecture 7 **Design and Develop Machine Learning** Models - Part 1

Credits

CIS 419/519 <u>Applied Machine Learning</u>. Eric Eaton, Dinesh Jayaraman.

<u>A Step-by-Step Explanation of Principal</u> <u>Component Analysis</u> (PCA).