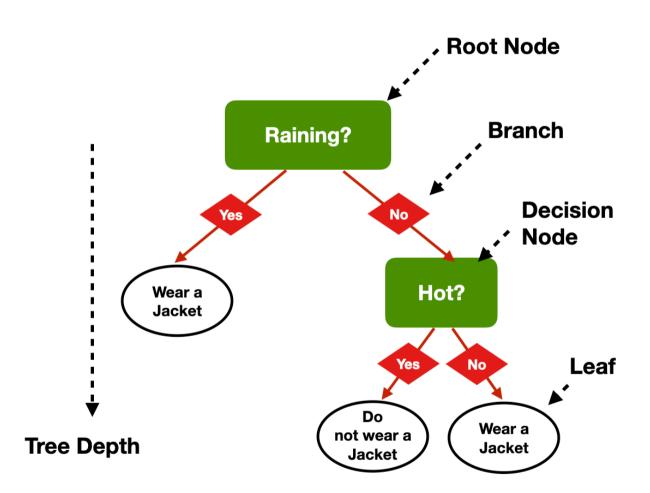
Machine Learning for Design

Lecture 8
Design and Develop Machine Learning
Models - *Part 2*

ML Algorithms on Structured Data

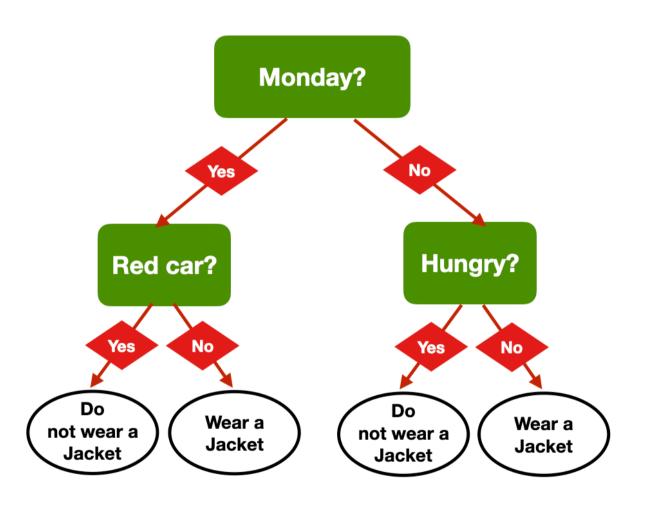
Decision Trees

- Trained with *labelled* data (supervised learning)
 - − classes →classification
 - − values → regression
- Simple model that resembles human reasoning:
 - Answering a lot of yes/no questions based on feature values



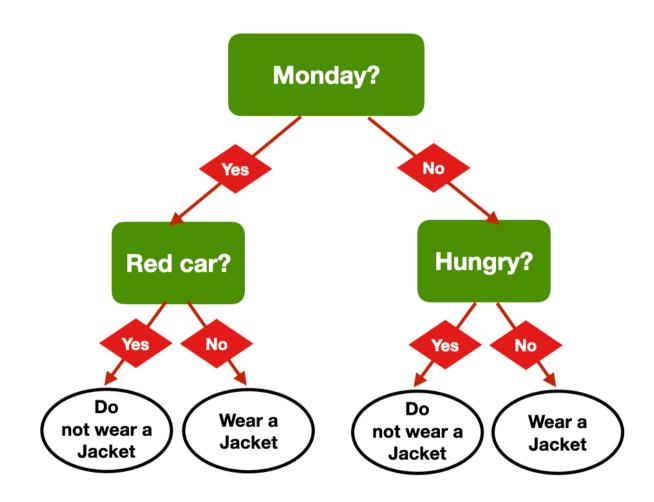
Problems

- Which questions to answer?
- How many questions?(Tree depth)
- In which order?



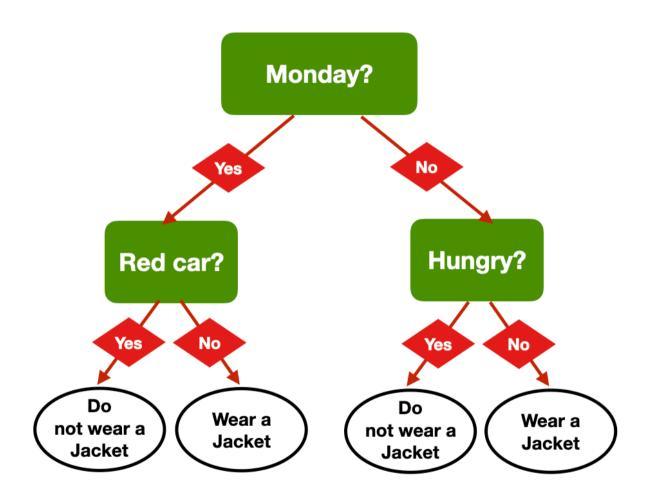
Same Problem, Multiple Trees

- Am I hungry?
- Is there a red car outside?
- Is it Monday?
- Is it raining?
- Is it cold outside?



Same Problem, Multiple Trees

- Am I hungry?
- Is there a red car outside?
- Is it Monday?
- Is it raining?
- Is it cold outside?

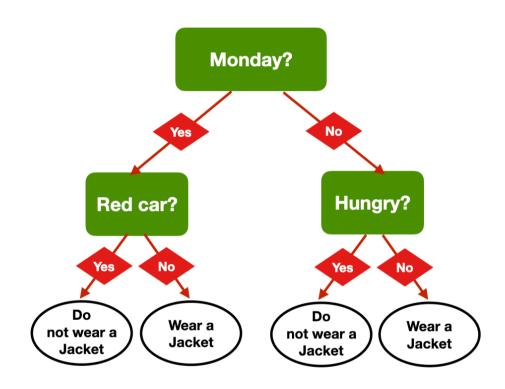


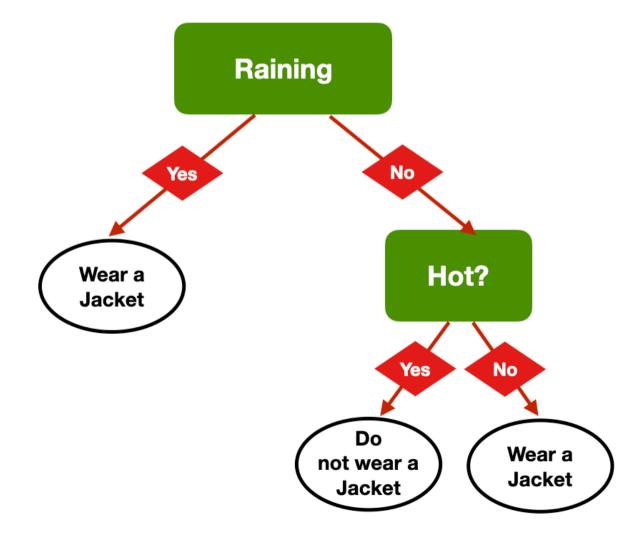
Same Problem, Multiple Trees

- Am I hungry?
- Is there a red car outside?
- Is it Monday?
- Is it raining?
- Is it cold outside?



Same Decision, different tress





How to decide the best question to ask?

Accuracy

– Which question helps me be correct more often?

Gini Impurity Index

- A measure of diversity in a dataset → diversity of classes in a given leaf node
 - index = 0 means that all the items in a leaf node have the same class
- Which question helps me obtain the *lowest average Gini impurity Index*?

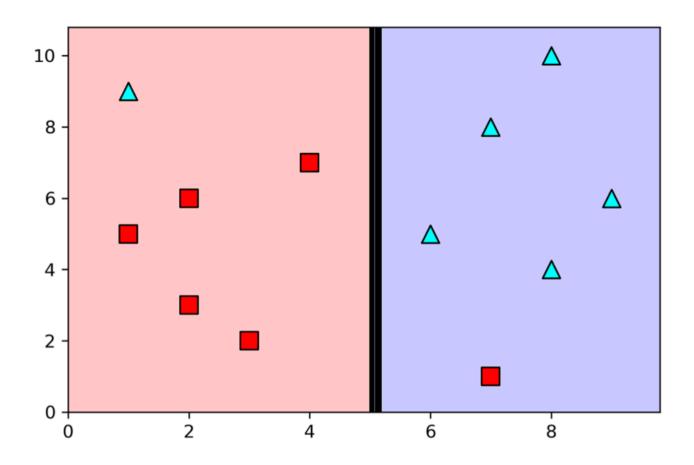
Entropy

- Another measure of diversity linked to information theory
- Which question helps me obtain the lowest average entropy?

Building the tree (pseudo-code)

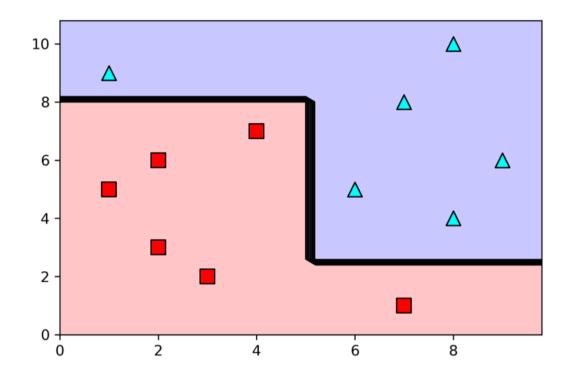
- Add a root node, and associate it with the entire dataset
 - This node has level 0. Call it a leaf node
- Repeat until the stopping conditions are met at every leaf node
 - Pick one of the leaf nodes at the highest level
 - Go through all the features, and select the one that splits the samples corresponding to that node in an optimal way, according to the selected metric.
 - Associate that feature to the node
 - This feature splits the dataset into two branches
 - Create two new leaf nodes, one for each branch
 - Associate the corresponding samples to each of the nodes
 - If the stopping conditions allow a split, turn the node into a decision node, and add two new leaf nodes underneath it
 - If the level of the node is i, the two new leaf nodes are at level i+1
 - If the stopping conditions don't allow a split, the node becomes a leaf node
 - Associate the most common label among its samples
 - That label is the prediction at the leaf

A geometrical perspective



- Step 1 Select the first question
- -X>=5
 - Best possible prediction accuracy with one feature

A geometrical perspective



- Step 2 Iterate
- -x < 5 & y < 8;
- -x>=5&y>=2
 - Perfect split of the feature space

Decision Trees: Pros

- Simple to understand and interpret.
 - Trees can be visualized
- Requires little data preparation
 - Other techniques often require data normalisation, dummy variables need to be created, and blank values need to be removed
- Able to handle both numerical and categorical data

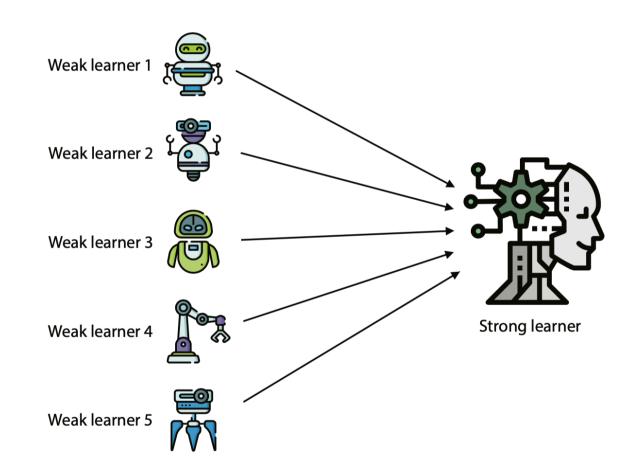
Decision Trees: Cons

- Possible to create over-complex trees that do not generalize the data well
 - overfitting
- Unstable → small variations in the data might result in a completely different tree being generated
- Biased trees if some classes dominate

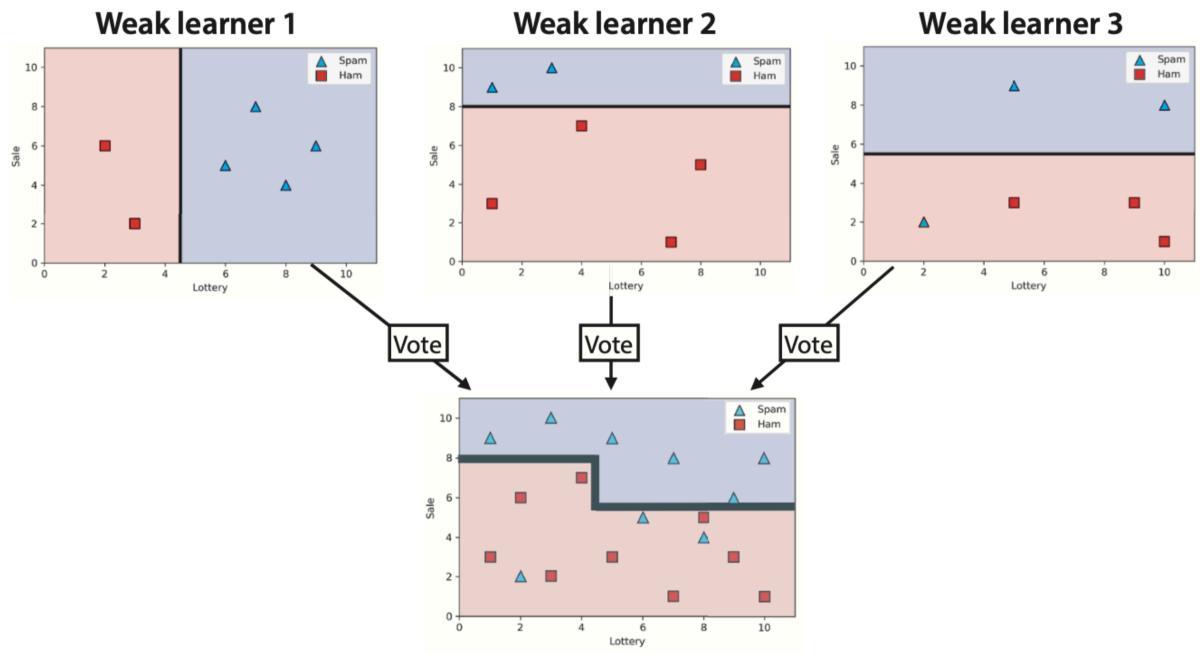
Ensemble Learning

Idea: combine several "weak" learners to build a strong learner

Random Forest: Weak learners are decision trees



- Build random training sets from the dataset
- Train a different model on each of the sets
 - weak learners
- Combination the weak models by voting (if it is a classification model) or averaging the predictions (if it is a regression model)
 - For any input, each of the weak learners predicts a value
 - The most common output (or the average) is the output of the strong learner



Strong learner (random forest)

Clustering

What is clustering?

- Grouping items that "belong together" (i.e. have similar features)
- Unsupervised learning: we only use data features, not the labels

- We can detect patterns
 - Group emails or search results
 - Customer shopping patterns
 - Regions of images

- Useful when you
 don't know what
 you're looking for
 - But: can give you gibberish
- If the goal is classification, we can later ask a human to label each group (cluster)

Why do we cluster?

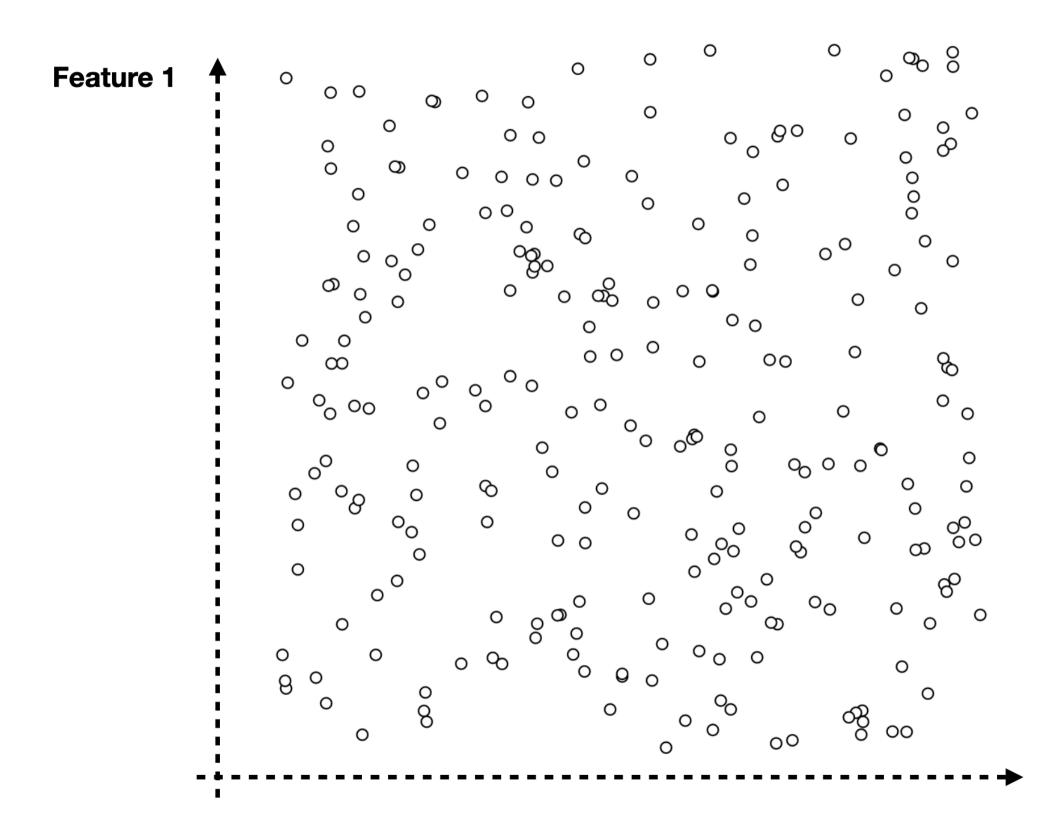
- Summarizing data
 - Look at large amounts of data
 - Represent a large continuous vector with the cluster number
- Counting
 - Computing feature histograms
- Prediction
 - Images in the same cluster may have the same labels
- Segmentation
 - Separate the image into different regions

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centres

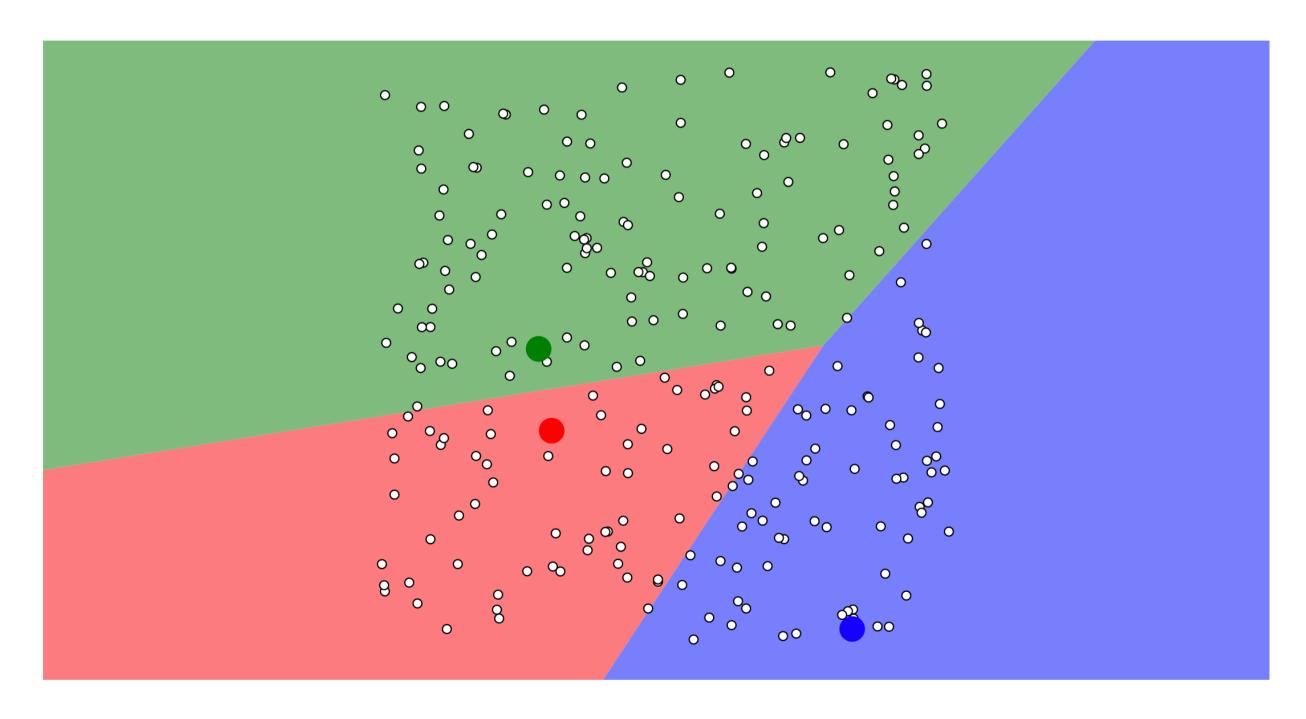
– Alternate:

- Assign data points to the closest cluster centre
- Change the cluster centre to the average of its assigned points
- Stop when no points' assignments change

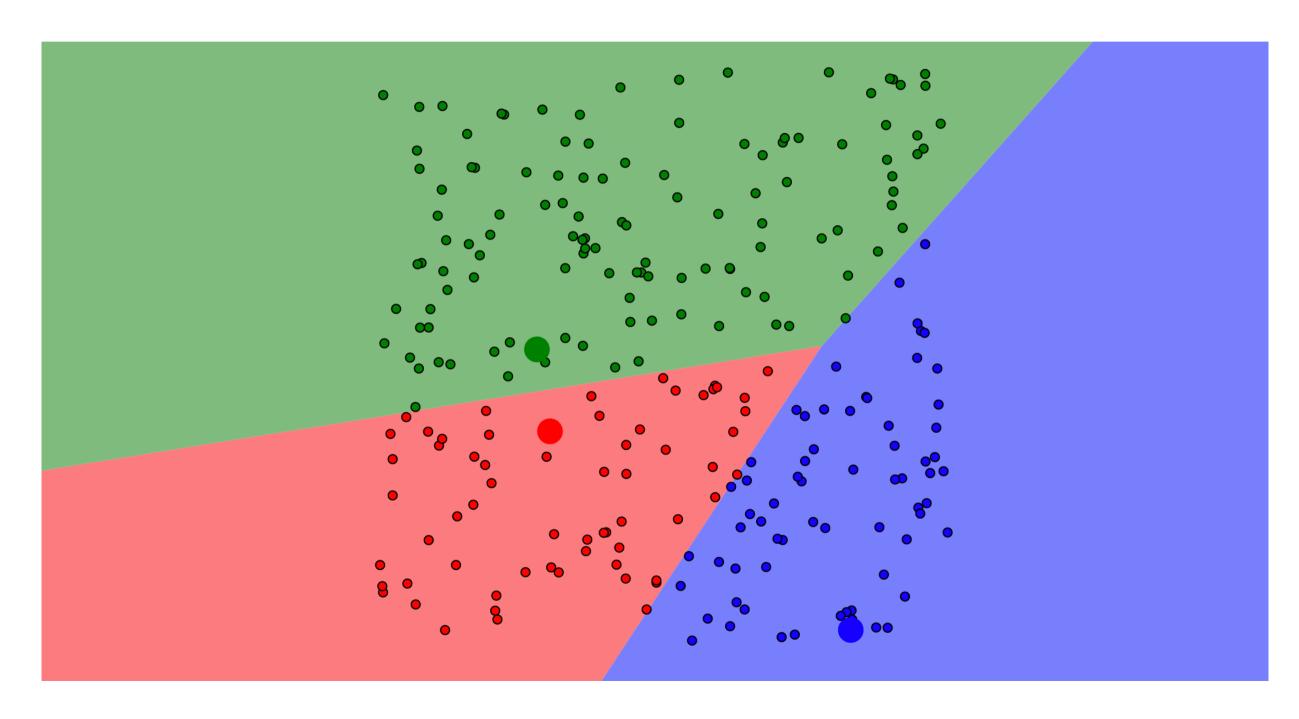


Feature 2

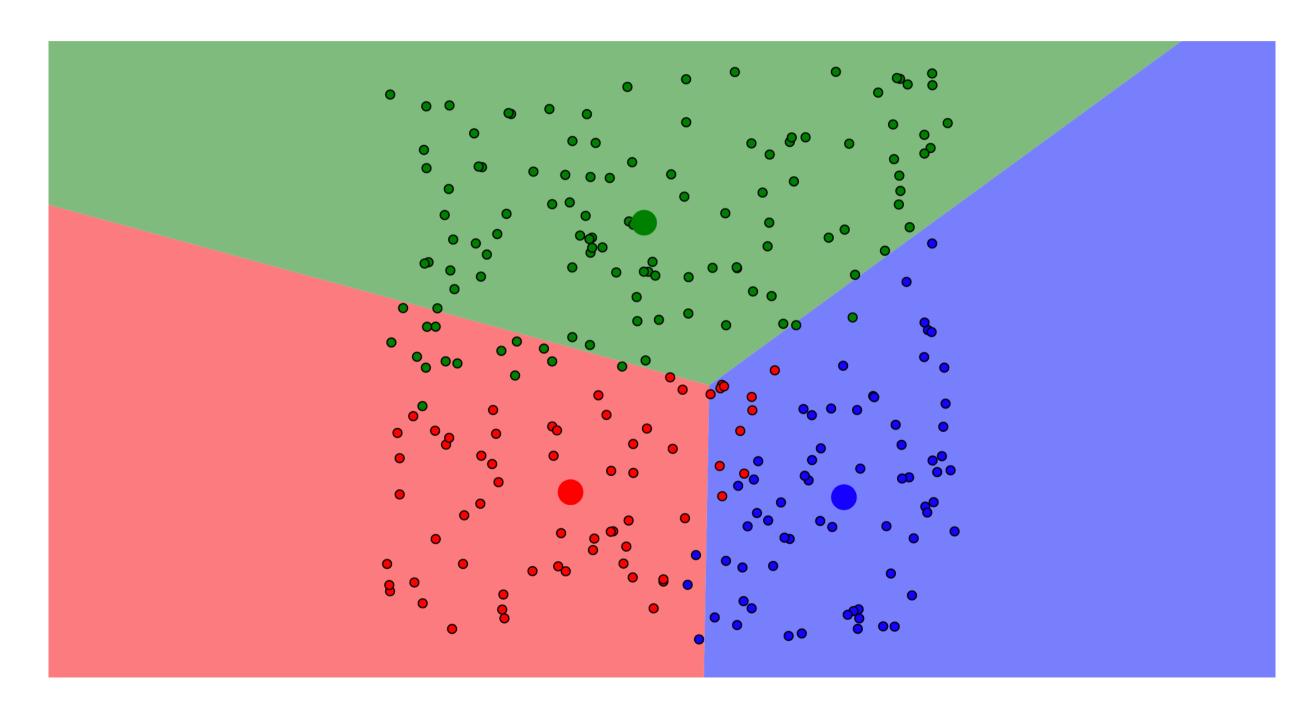
Add 3 Centroids (randomly)



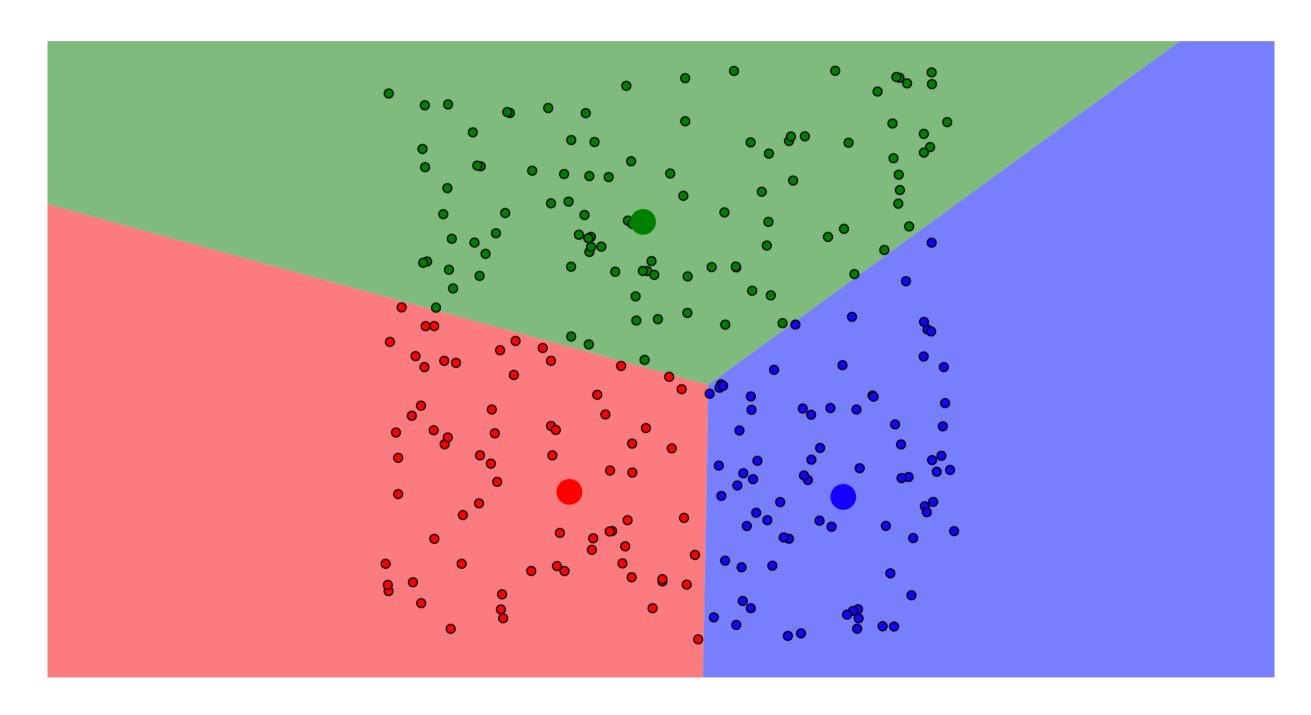
Assign Data Points



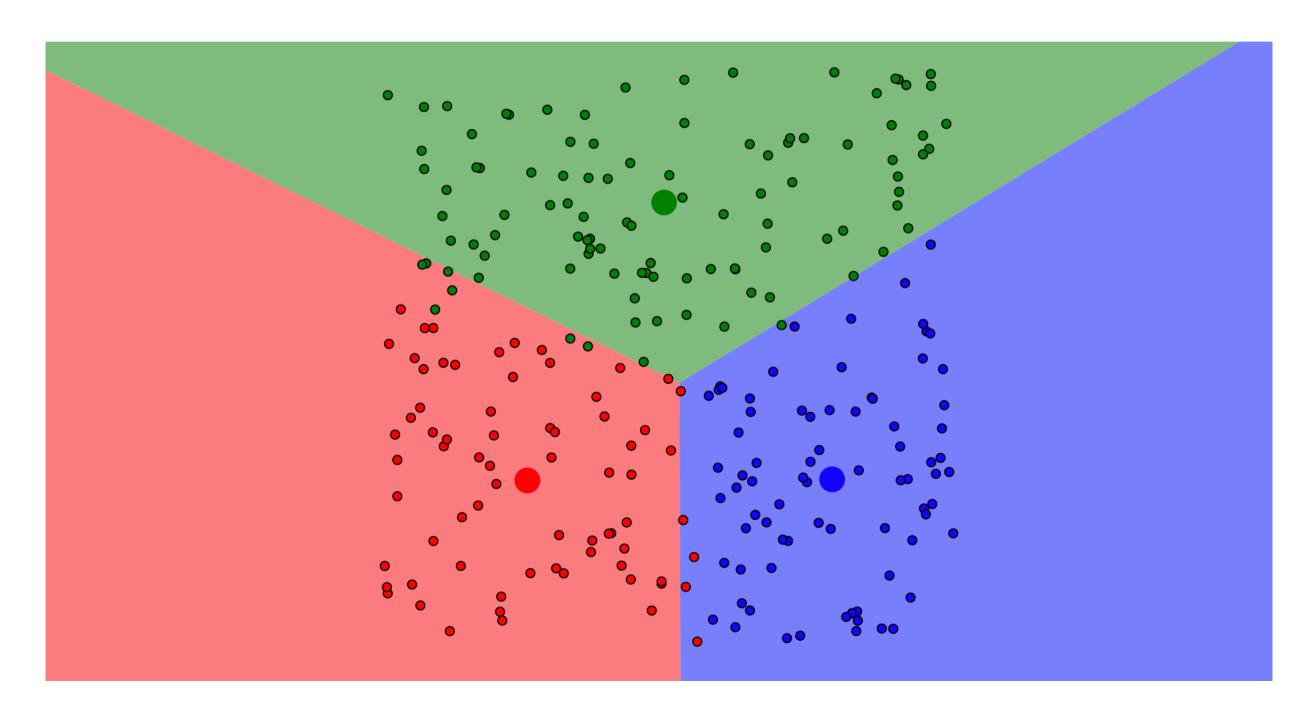
Update Centroids



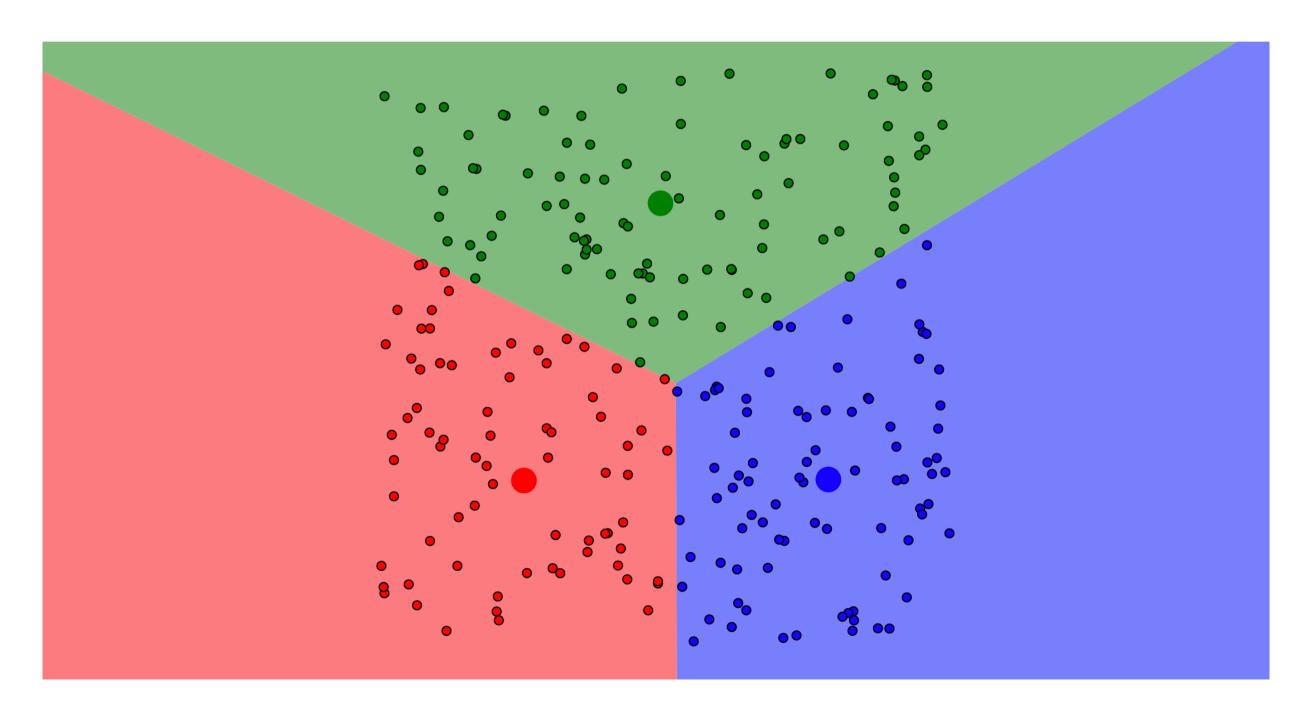
Re-Assign Data Points



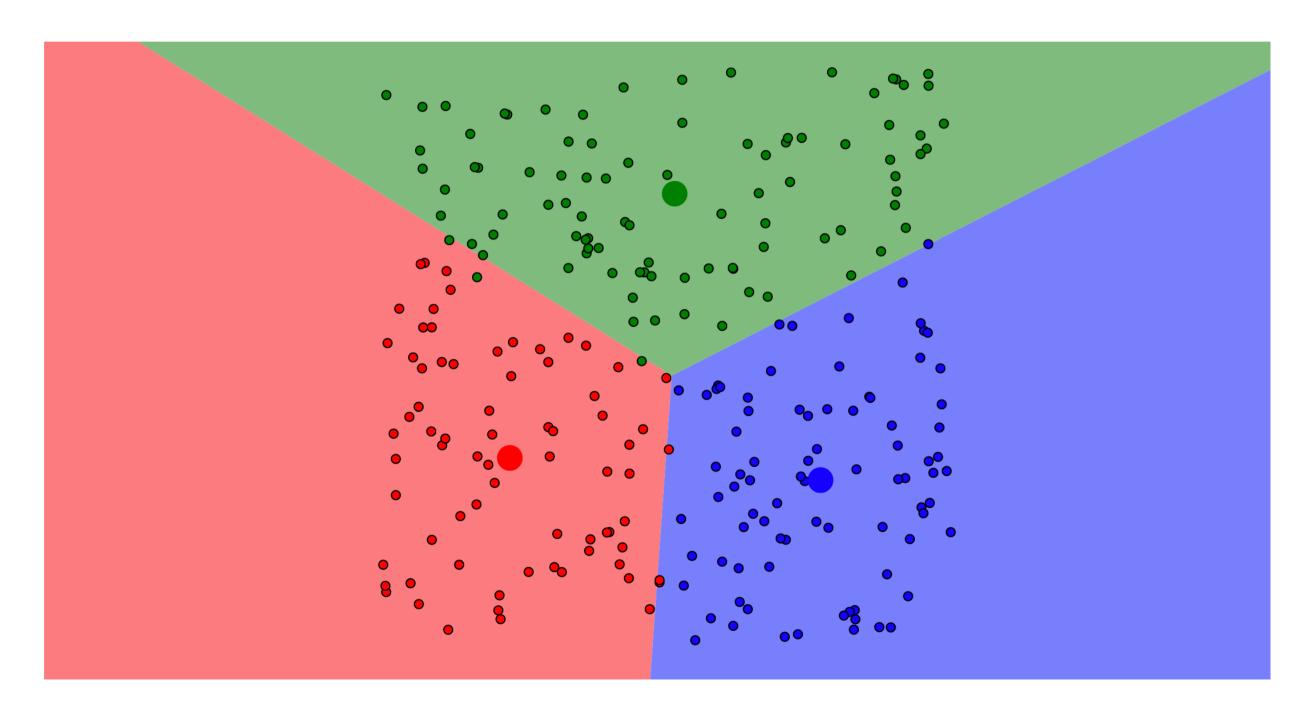
Update Centroids



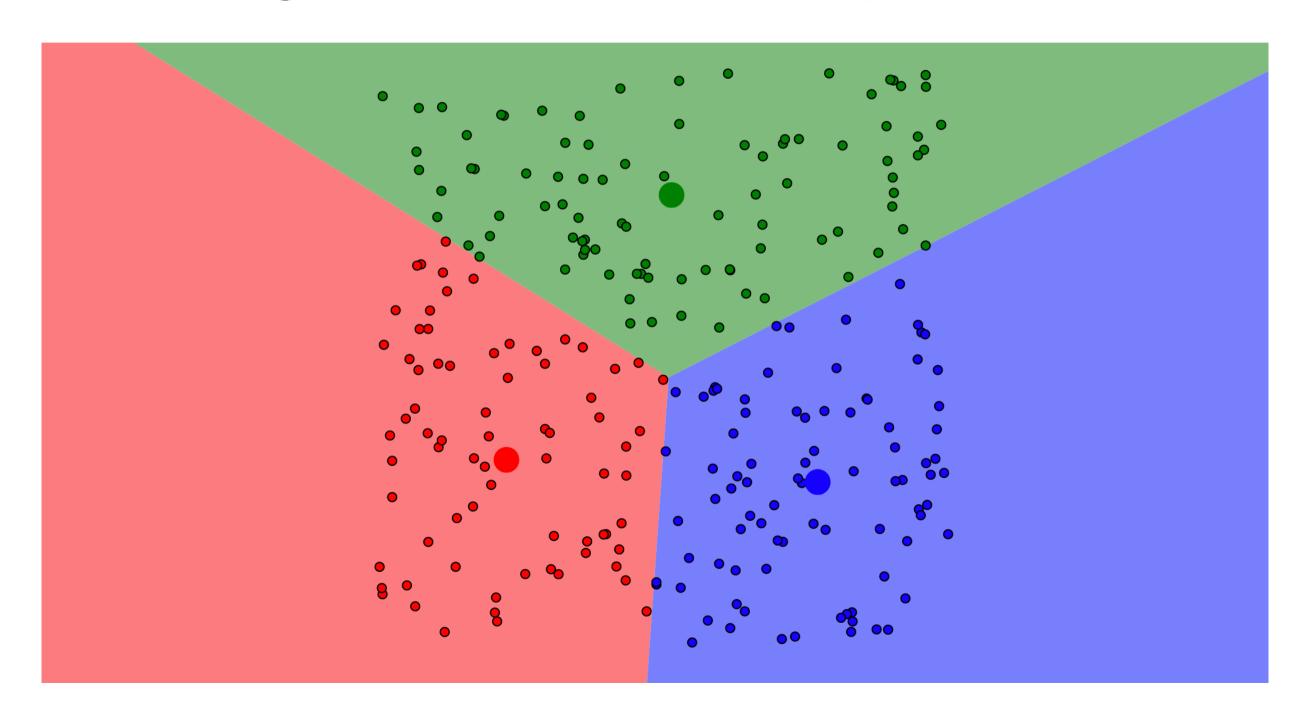
Re-Assign Data Points



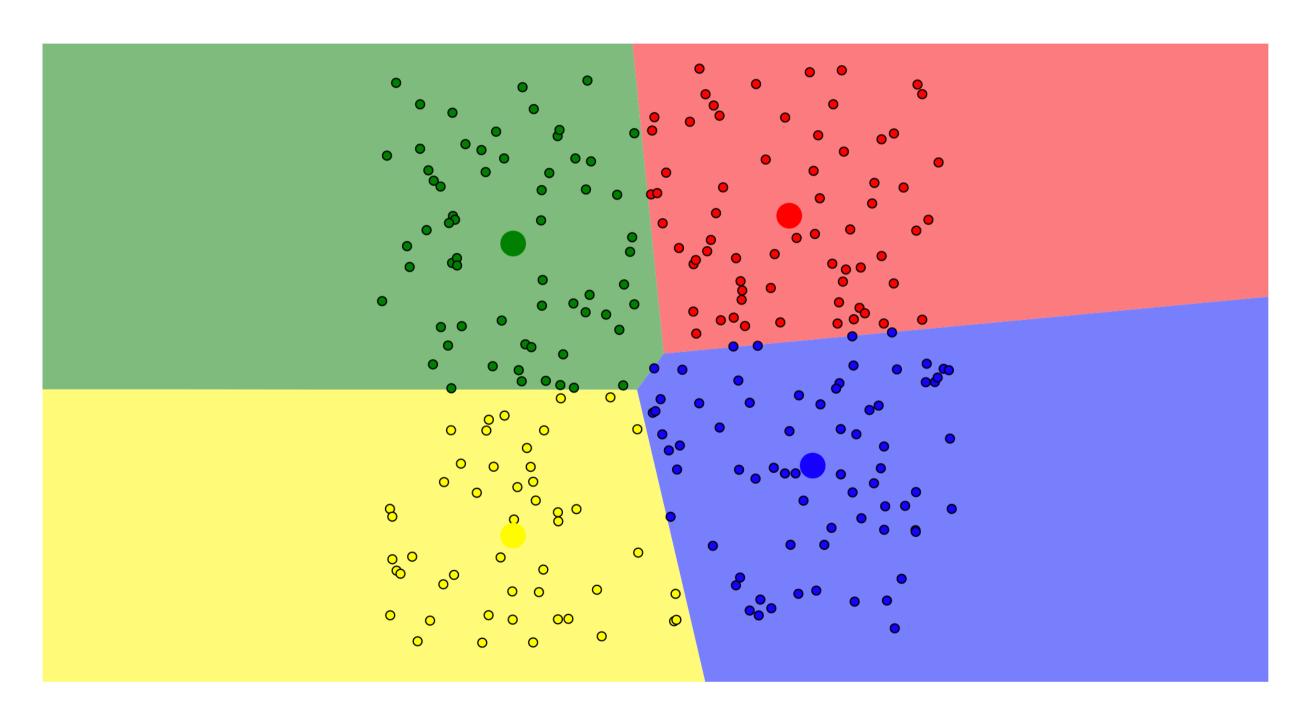
Update Centroids



Re-Assign Data Points - Stop



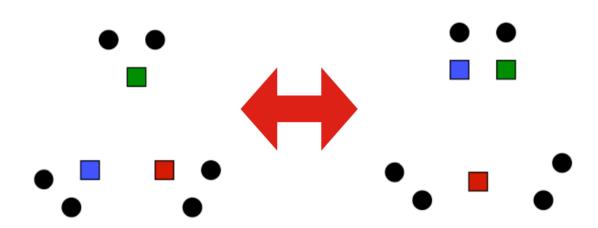
Add 4 Centroids (randomly)



K-Means Pros

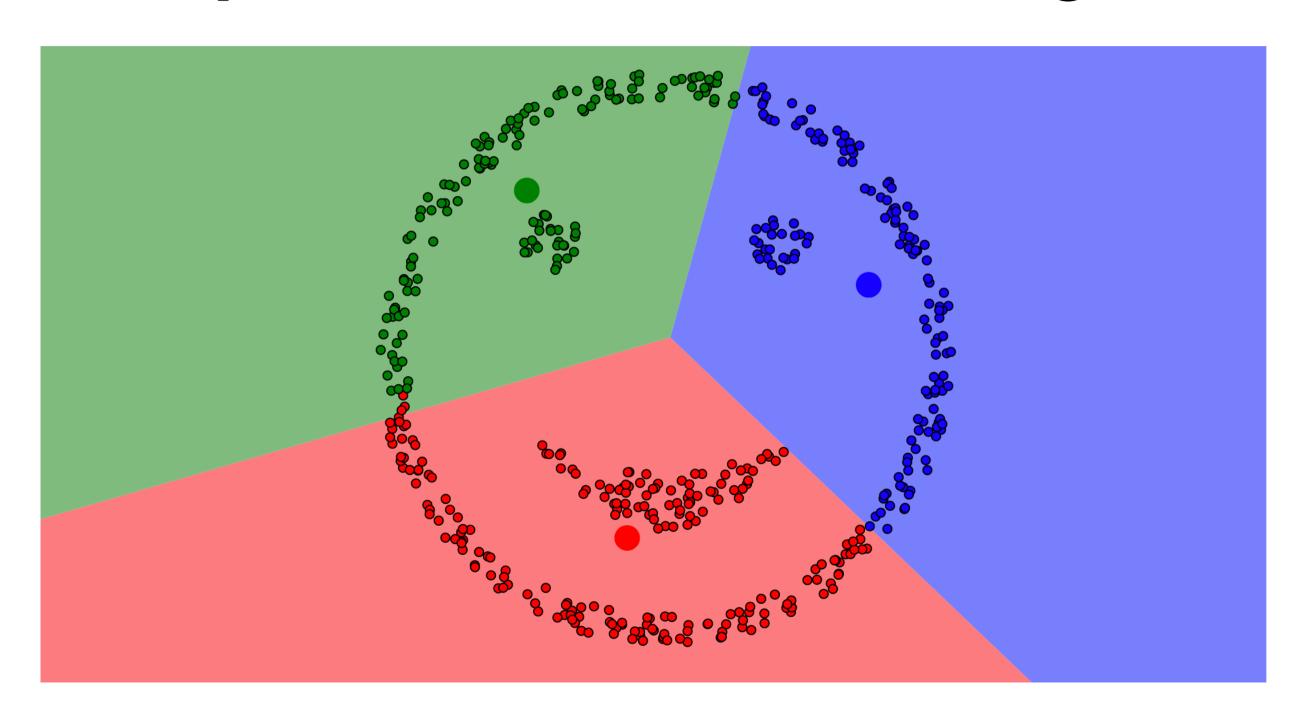
- Simple, fast to compute
 - Guaranteed to converge in a finite number of iterations

K-Means Cons



- Setting k?
 - One way: silhouette coefficient
- Algorithm isheuristic
 - It does matter what random points you pick!
 - Sensitive to outliers

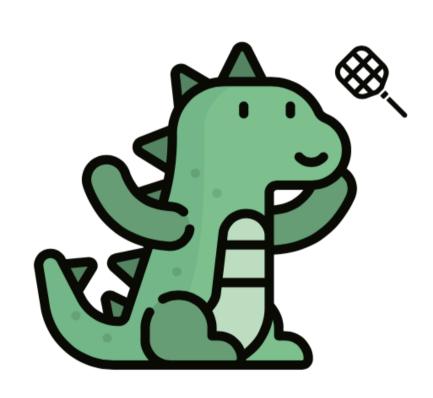
Example of K-means not working

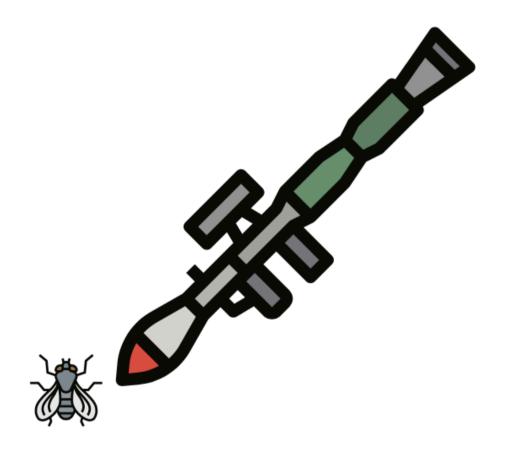


Back to Evaluation

- No free-lunch: there is no one best machine learning algorithm for all problems and datasets
- How well does a learned model
 generalize to a new evaluation set?
- Challenge: achieving good generalization and a small error

Underfitting vs. Overfitting

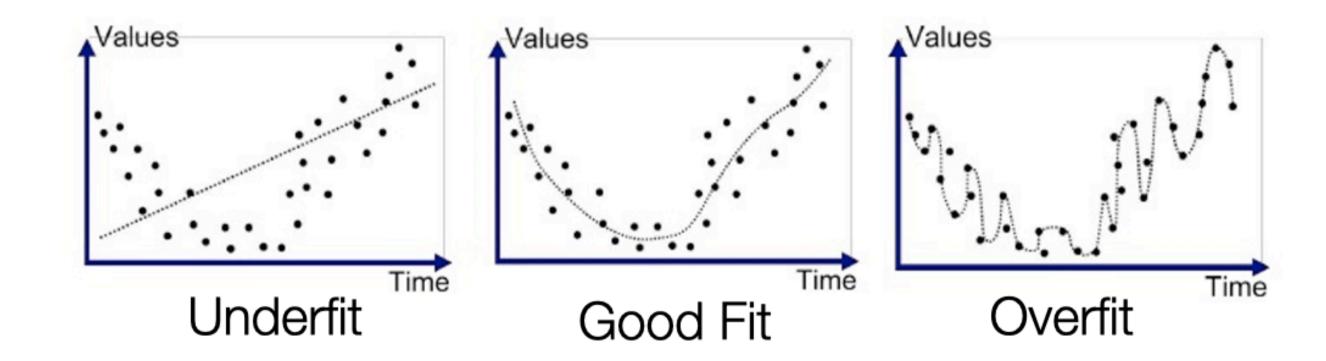




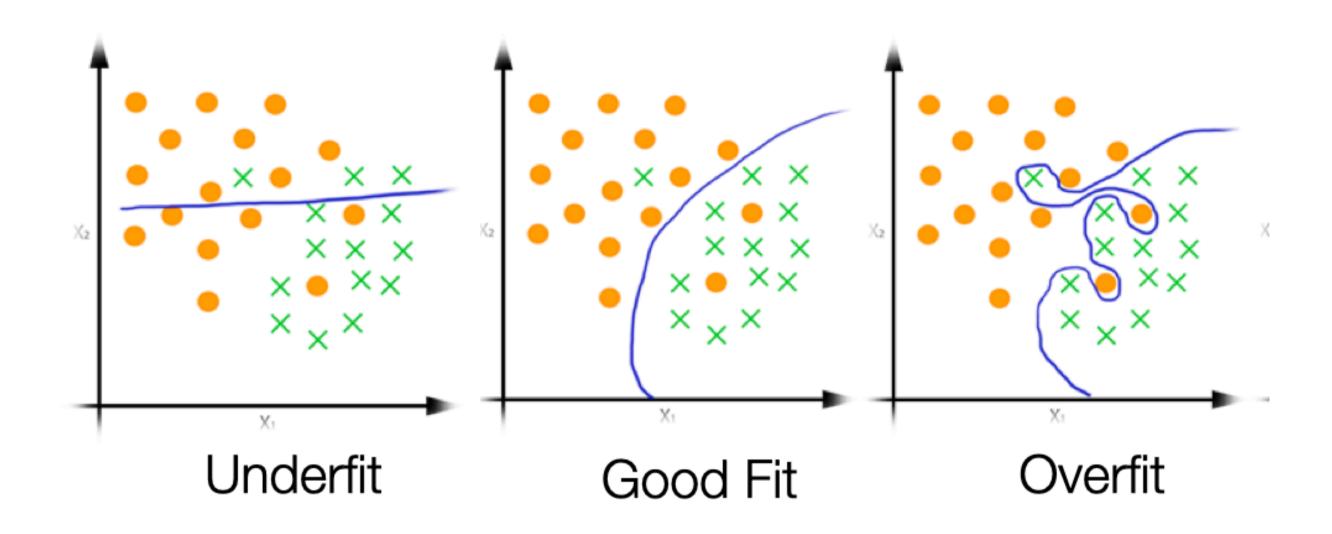
Underfitting

Overfitting

Regression

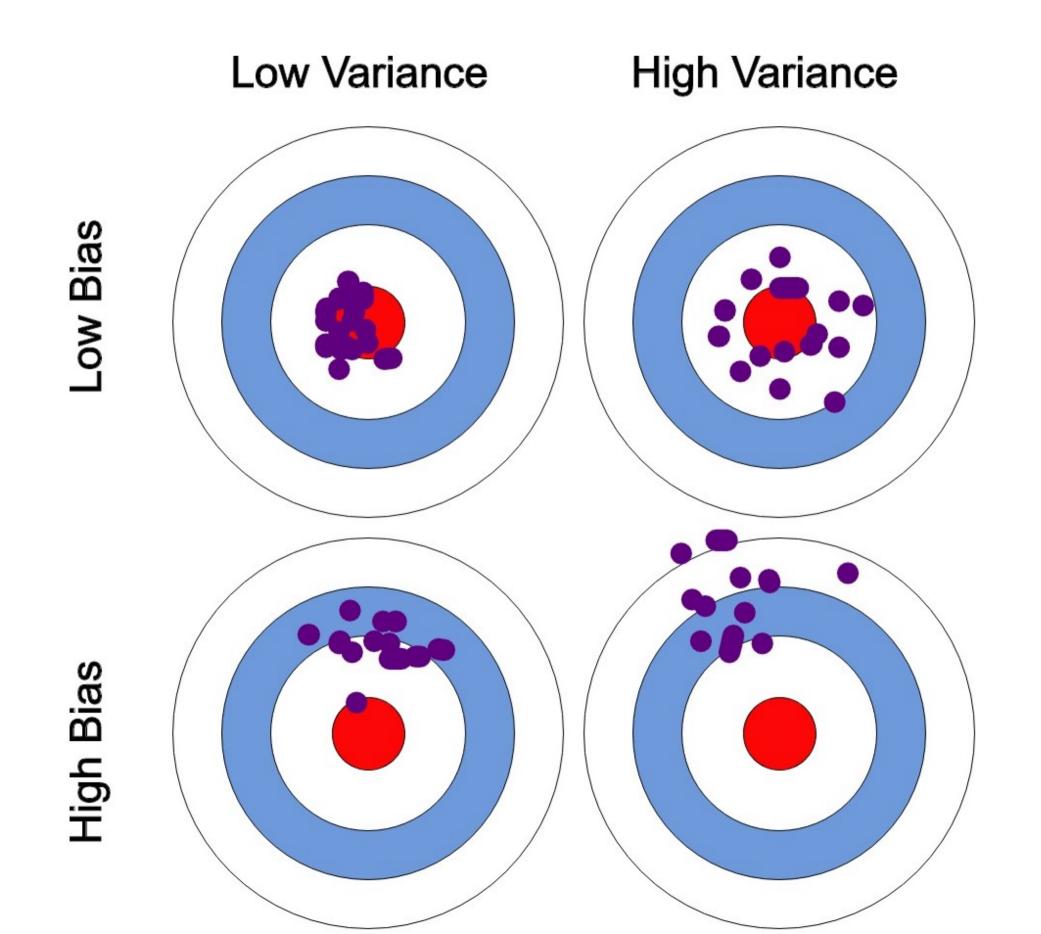


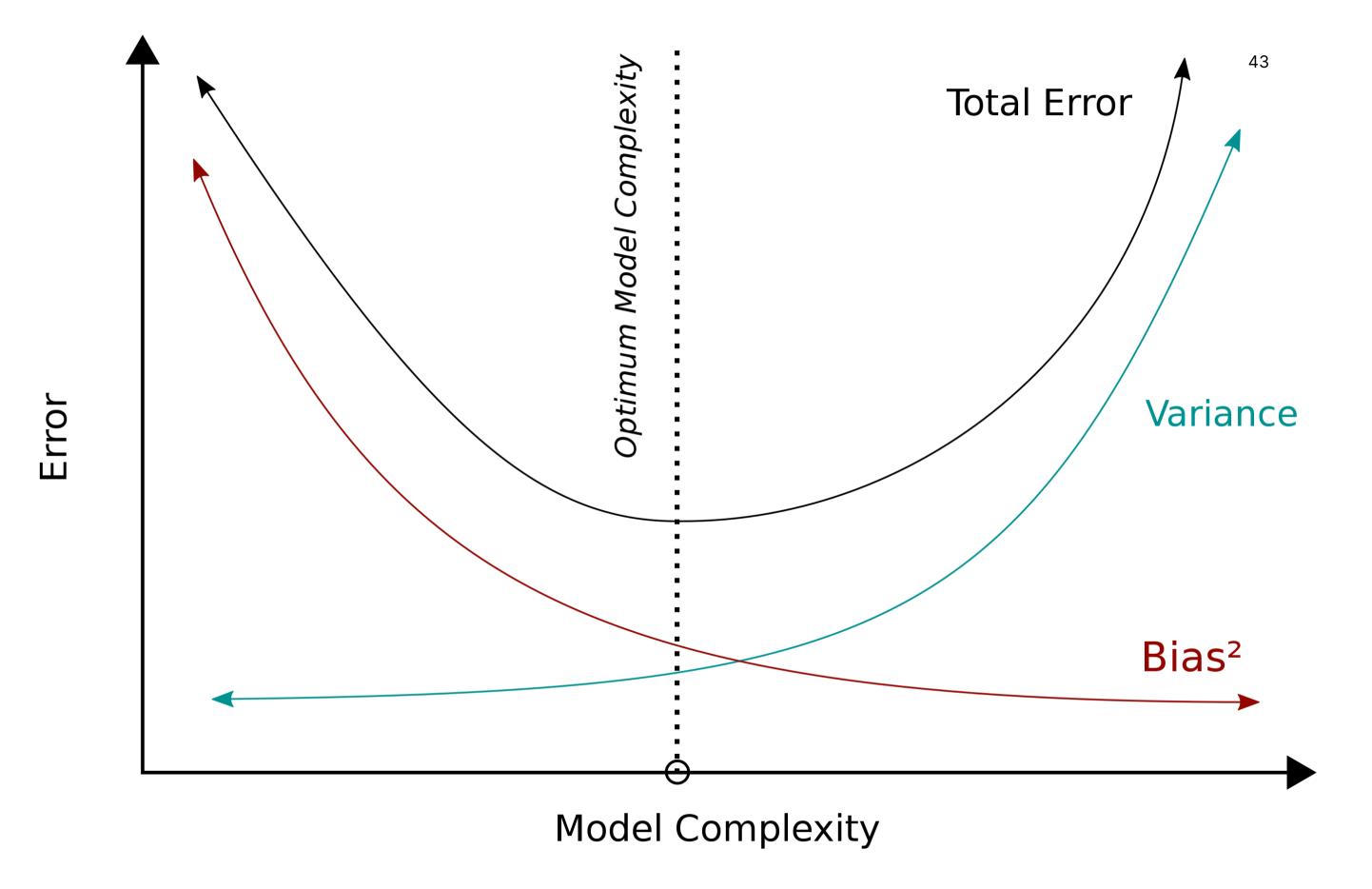
Classification



Components of expected loss

- Noise in data: unavoidable
- Bias: how much the average model differs from the true model
 - Error due to inaccurate assumptions/simplifications made by the model
- Variance: how much models estimated from different training sets differ from each other
 - Too much sensitivity to the samples





Protect Against overfitting

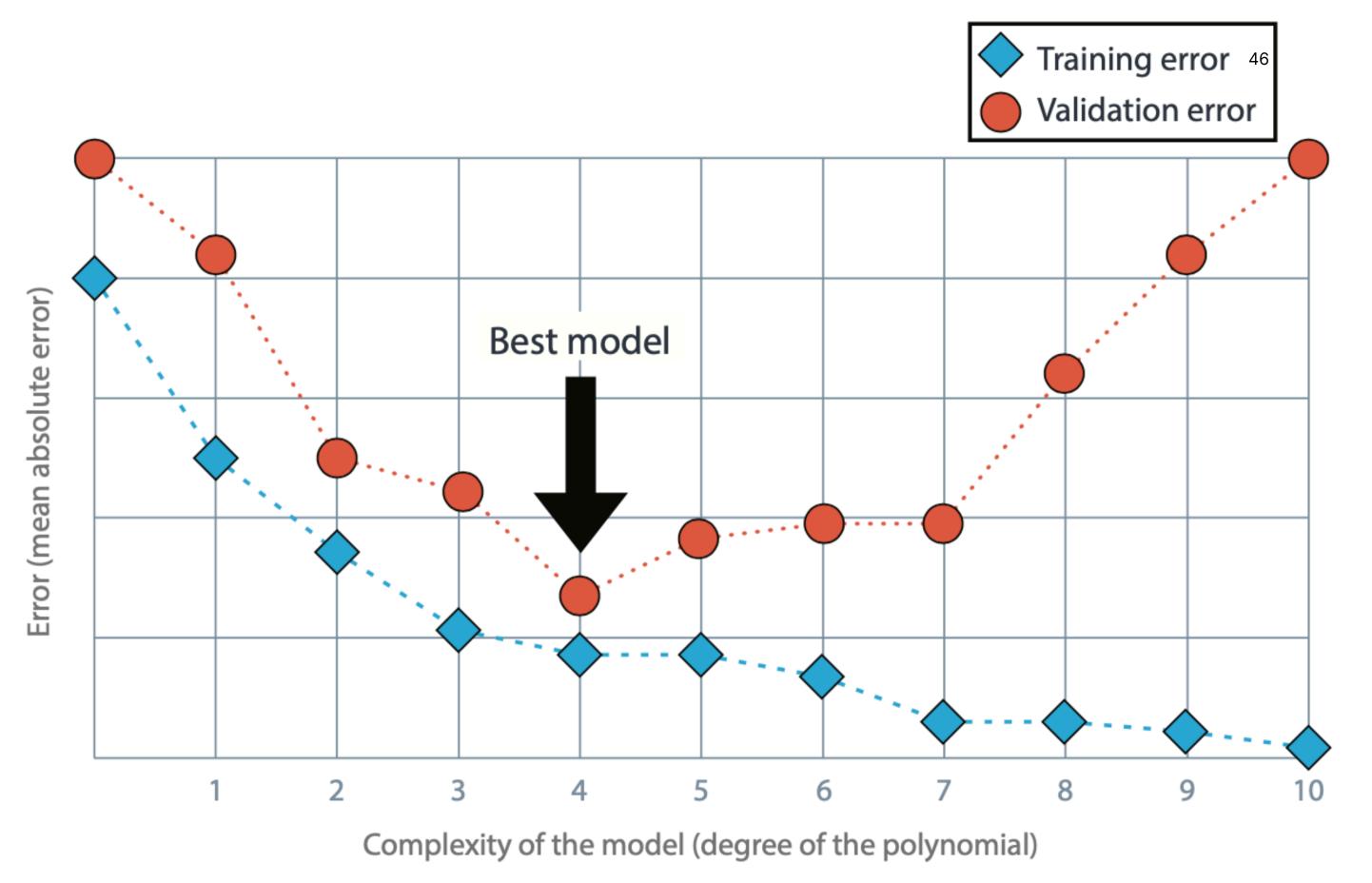
- Low bias and high variance
- Low training error and high test error

- The model
 - is too complex
 - matches too closely the idiosyncrasies (noise) of the training data

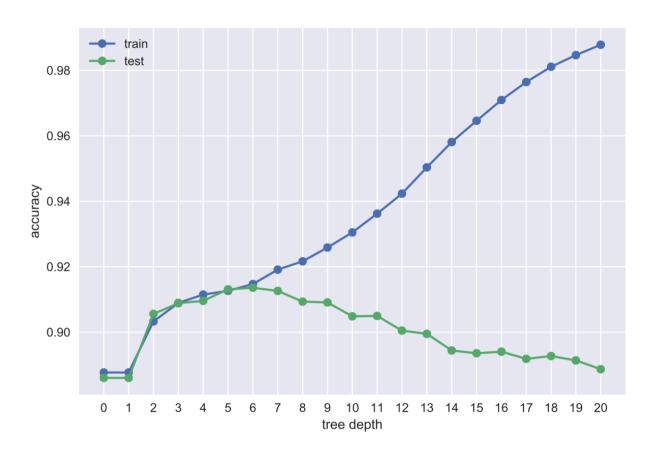
Protect Against underfitting

- High bias and low variance
- High training error and high test error

- The model
 - is too simple
 - does not
 adequately capture
 the patterns in the
 training data

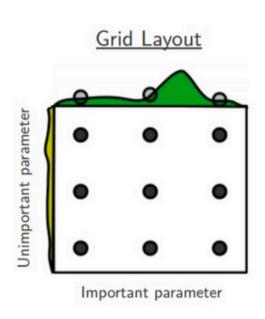


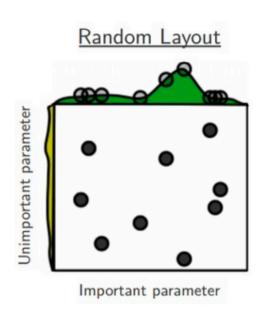
Tuning Hyper-parameters



- Hyper-parameter: Inputs to the learning algorithms that control their behavior
- Examples:
 - maximum tree depth in decision trees
 - $\overline{}$ number of neighbors k in k-nearest neighbor
 - Neural networks: architecture, learning rate

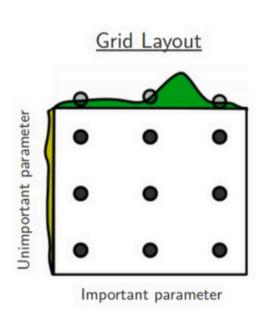
Tuning Hyperparameters

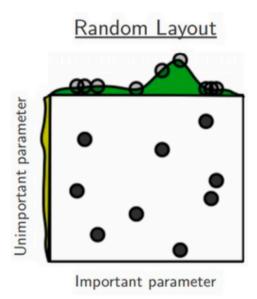




- For a model to work well, they often need to be tuned carefully
 - Huge search space!
 may be inefficient
 to search
 exhaustively

Tuning Hyperparameters: Approaches

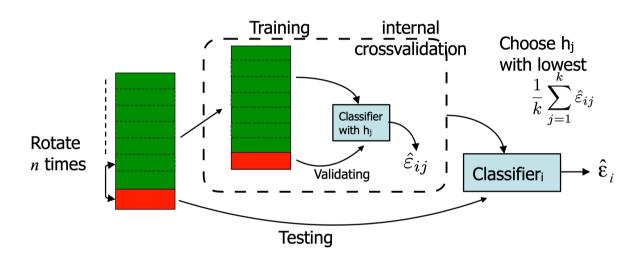




 DON'T optimise these numbers by looking at the test set! That is CHEATING!

- Grid search: brute-force exhaustive search among a finite set of hyper-parameter settings
 - All combinations are tried,
 then the best setting
 selected
- Random search: for each hyper-parameter, define a distribution (e.g., normal, uniform)
 - In the search loop, we sample randomly from these distributions

Double Cross-Validation



- Cross-validation inside another cross-validation
 - To optimise over the hyperparameter
- The minimum error is often not the most interesting. Try to understand the advantages/disadvantages
 - What errors are made? (inspect objects, inspect labels)
 - What classes are problematic? (confusion matrix)
 - Does adding training data help? (learning curve)
 - How robust is the model?

Machine Learning for Design

Lecture 8
Design and Develop Machine Learning
Models - *Part 2*

Credits

Grokking Machine Learning. Luis G. Serrano. Manning, 2021

[CIS 419/519 Applied Machine Learning]. Eric Eaton, Dinesh Jayaraman.

https://scikit-learn.org/stable/modules/tree.html

Deep Learning Patterns and Practices - Andrew Ferlitsch, Maanning, 2021

Machine Learning Design Patterns - Lakshmanan, Robinson, Munn, 2020