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B \ery few questions for Week 2 :(

B \We will publish few quizzes for Week 2 today

B First group assignment next week!

B Deadline next Tuesday







How do
humans see”?




Hubel and Wiesel, 1959

https://www.youtube.com/watch?v=I0Hayh06LJ4
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FIGURE 4.8 Response of a single cortical cell to bars presented at various orientations.
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Neural Correlation of Objects & Scene Recognition

Faces > Houses

Stimuli

Scrambled
-

% signal change

Kanwisher et al. J. Neuro. 1997 Epstein & Kanwisher, Nature, 1998




Why Is
machine
vision hard?




The deformable and truncated cat

B [ 4
Figure 1. The deformable and truncated cat. Cats exhibit (al-

most) unconstrained variations in shape and layout.
Parkhi et al. The truth about cats and dogs. 2011
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target network — forward pass

==*" backward pass

- == €rror vs. desired output

“school bus”

3D image
renderer (b) 2D image classifier

(a) 3D scene camera

Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects. Alcorn et al. 2019
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https://arxiv.org/pdf/1811.11553.pdf



https://arxiv.org/pdf/1811.11553.pdf

Computer Vision Challenges

Viewpoint Variation

B A single instance of an object can be oriented in many ways with respect to the
camera

Scale variation

B \isual classes often exhibit variation in their size (size in the real world, not only in
terms of their extent in the image)

Deformation
B Many objects of interest are not rigid bodies and can be deformed in extreme ways

Occlusion

B [he objects of interest can be occluded. Sometimes only a small portion of an object
(as little as few pixels) could be visible

lllumination Condition
B [he effects of illumination are drastic on the pixel level

Background clutter
B [he objects of interest may blend into their environment, making them hard to identify

Intra-class variation

B [he classes of interest can often be relatively broad, such as chair. There are many
different types of these objects, each with their own appearance

Viewpoint arition

Scale variation

Deformation

=R~ BB -
EREDE N eEl-S
il VEN yEREN
sl el LA R o
] o Jadl TR Tl
HE-IsBre s\
R s MRS | e
ERFLEOMERTETR
=S P

% s P B R O

Occlusion

13






Flattening

d = width x height Input layer size = d
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Course of dimensionality

B High dimensionality
B A 1024x/768 Image has d = 766432 vixel space
B Atiny 32x32 image has d = 1024 (~ 10° dimensions)

B Decision boundaries in pixel space
are extremely complex

B \\We will need “big” ML models with N et
lots of parameters B running

B For example, linear regressors need
d parameters
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Downsampling

1024

224

1024




What about generalisation?




The “old days”: Feature Extraction

B Feature

B A relevant piece of information about the content of an
image

B c.g. edges, corners, blobs (regions), ridges

B A good feature
s repeatable | s
[dentifiable - . 8
can be easlly tracked and compared

Is consistent across different scales, lighting conditions, . o
and viewing angles ot one lmags —_ at thousands of images

B |s still visible In noisy iImages or when only part of an
object Is visible

B can distinguish objects from one another
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Feature Extraction Techniques  httes//www.ifeat.org

Scale-Invariant Feature Transform (SIFT)

Find “interest points” Compute features at Convert to fixed-dimensional

INn the scene Interest pointﬁ feature vector
gl e ol A Histogram

......
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The “old days”: Feature Engineering

B Machine learning models are only as good as the features you provide

B[O figure out which features you should use for a specific problem
B rely on domain knowledge (or partner with domain experts)
B cxperiment to create features that make machine learning algorithms work better

Input Hanacrafted Feature Classification Module Output
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Extraction
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Performance

Object Detection (~2007) Face Detection (~2013)

Felzenszwalb, Ramanan, McAllester. A Discriminatively Trained, Multiscale,

Deformable Part Model. CVPR 2008 (DPM v1 - EEX
( ) https://github.com/alexdemartos/ViolaAndJones

Credits: Ross Girshick (Facebook Al Research)
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Convolutional Neural Networks

Feature extraction Classification Prediction
I | | I | |

Feature maps Feature maps

maps ‘\.).. s
i Y

2227 Flattened \}9‘ OO
Sullillizal N
A///A/A///

Convolutional layers Fully connected layers Output layer

Input layer

B CNNs exploit image properties to
drastically reduce the number of
model parameters

B Feature maps

Automatically extracted
nierarchical

Retain spatial association between
DIXels

B Translation invariance

a dog is a dog even if its image is
shifted by a few pixels

B | ocal interactions

all processing happens within very
small image windows

B within each layer, far-away pixels

cannot influence nearby pixels

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020
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Convolution & Feature Maps
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https://cs.stanford.edu/people/
karpathy/convnetjs/demo/mnist.html
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Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020


https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

What do CNN learn?

oNnve D2 ne convid convd convd s fe6 fe7

fwd convd 151 Back: deconv (from conv3_ 151, disp raw) Boost: 0/]

https://youtu.be/AgkflQ41GaM https://yosinski.com/deepvis


https://www.youtube.com/watch?v=AgkfIQ4IGaM

Feature Visualisation

Low-Level| |Mid-Level| |[High-Level Trainable
Feature Feature Feature Classifier

.

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Visualizing and Understanding Convolutional
Network. Zeiler and Fergus, ECCV 2014

27



L
SN
§ :

I L

hdnading 0100

!
i

Eici‘-—"‘/ ~
al

M “"'IH
g - :::‘:i :
Bol

/
N

v
" 4 . —
:

\ -
-~

{ ] “;7-\“"
/ )
< 4

v
v
-

— .« ]

“umﬁ

._40

=
st

\.; !§

.
M

\

TR

A
P\
.
L
=

... .' 3
i
B
B

. AN

O . | n: v
e .l e IS

.-"r
\\\ "“-\Y

Visualizing and Understanding

Convolutional Network.
Zeiler and Fergus, ECCV 2014
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Visualizing and Understanding
Convolutional Network.

Zeiler and Fergus, ECCV 2014
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Network dissection

House Dog Train Plant Airplane
res5c unit 1410 loU=0.142 res5c unit 1573 loU=0216 res5c unit 924 loU=0.293 res5c unit 264 loU=0.126 res5c unit 1243 loU=0172

8 | ﬁ

resSc unit 766

ResNet-152

inception_4e unit 56

inception 4e unit 714

GooglLeNet

convs 3 unit 402

VGG-16

http://netdissect.csail.mit.edu 30



Translation Invariance

A
A

B But not rotation and scaling invariance!




Data Augmentation

B (Generate variations of the input data, to improve generalisability (out of distribution inputs)

Improve invariance (rotation, scaling, distortion)

B Geometric

Flipping

Color space
Cropping
Rotation
Translation
Noise Injection

Color space transformation
Mixing Images

Random erasing

Adversarial training
GAN-based image generation

A survey on Image Data Augmentation for

Input

Generalized
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Deep Learning. Shorten, Journal of Big
Data, 2019
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Robustness to input variation

&
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Strike (with) a Pose: Neural Networks Are Easily
Fooled by Strange Poses of Familiar Objects.
Alcorn et al. 2019

https://arxiv.org/pdf/1811.11553.pdf
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https://arxiv.org/pdf/1811.11553.pdf

Transfer Learning Transfor Loaring

Reuse a model trained for one task is re-purposed
(tuned) on a different but related task

Model trained on large dataset Useful in tasks laking abundant data

S '™ T O W I N S S B BN BN BN BN BN N BN NN BN BN BN BN B BN BN B BN BN B B W
1 Input layer Bottleneck layer Input Data
E‘ w Cat Classifier Dog Classifier ’@_ Vi‘

|
|—’

Dog Dog Not Do
Labelled Data ML Algorithm ML Model II» ML Model «H ML Algorithm Labelled Data

Prediction ﬂ Dog

q-—- - — — = = = = -~

Output layer

¥ B Problem: training custom ML models requires
extremely large datasets
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/‘ \{'//"w. B Transfer learning: take a model that has been trained
(O

on the same type of data for a similar task and
apply it to a specialised task using our own custom

OQOoN®
NS
!{“2“5}:2

data.
B Same data: same data modality. same types of images
""" N ')'\"/V\/ (e.g. professional pictures vs. Social media pictures)
Ms o B Similar tasks: if you need a new object classification

model, use a model pre-trained for object classification
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Advanced
Computer Vision
Techniques




Generative Adversarial Networks

B [ earn patterns from the training dataset and create new images that have a similar distribution of the training
set

B [wo deep neural networks that compete with each other

B [he generator tries to convert random noise into olbservations that look as if they have been sampled from the original
dataset

B [he discriminator tries to predict whether an observation comes from the original dataset or is one of the generator’s
forgeries

Training set
// — Real

— Fake
'j ﬂ o Discriminator

Fake image

Random noise

Generator

36
Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020



Generative Adversarial Networks

B [he generator’s architecture looks like an B [he discriminator's model is a typical
inverted CNN that starts with a narrow input classification neural network that aims to
and is upsampled a few times until it reaches classifty images generated by the generator
the desired size as real or fake

Training dataset Discriminator network

Convolutional
, layers
: N . Sigmoid
Real images —
Upsamplmg 'mag function
Random noise > N q 5
input vector S
F\‘\ L)

'.“&,\'L‘ h Reshaping O )"
ey 'J v ¢
g A Fake images —
Tx7x128 44 %14 x128
28 x 28 x 64 - ’

28 x 28 x 1

realness
probability output

Feedback through backpropagation

Random noise

Output

Discriminator — (e.g. 0.3)

> 4 R N
A e S U . L .

Fake image

Generator 37

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020



Which face is real? - https://www.whichfaceisreal.com/

ABOUT METHODS LEARN PRESS CONTACT BOOK CALLING BS

Click on the person who is real.

B [ry this

https://thispersondoesnotexist.com/ 38




Image super-resolution GAN

B A good technical
summary

https://blog.paperspace.com/
image-super-resolution/

A . I =

https://newatlas.com/super-resolution-weizmann-institute/23486/
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Synthetic Video Generation

{"} synthesia

Say goodbye to cameras,
microphones and actors!

Create professional Al videos from text in 60+ languages.

4) Unmute video




Text-to-image Generation

TEXT PROMPT

AI-GENERATED
IMAGES

TEXT PROMPT

AI-GENERATED
IMAGES

B Nhttps://openai.com/blog/dall-e/

an illustration of a baby daikon radish in a tutu walking a dog

v ¢ 4
=

o

Edit prompt or view more images+v

an armchair in the shape of an avocado. ...

As &

Edit prompt or view more imagesv

(.j@
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m ML-generated painting sold for $432,500

B [he network trained on a dataset of
15,000 portraits painted between the
fourteenth and twentieth centuries

B Network “learned” the style, and
generated a new painting

A “‘-\. 7 -

42

A~ e e M@0l B L 026G s //en wikipedia.org/wiki/Edmond_de_Belamy



Neural Style Transfer

Content Image

https://fluxml.ai/experiments/style Transfer/

Style Image

Stylized Result
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te.com/rinongal/stylegan-nada

ICa

//repl

https
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Deepfakes

45


https://www.youtube.com/watch?v=iyiOVUbsPcM




Week 3 Tasks

B Have fun with the first assignment !

B Please contribute Week 3 questions - we will share the link later

B See you on Friday!
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Credits

B CMU Computer Vision course - Matthew O’ Toole. http://16385.courses.cs.cmu.edu/spring2022/

CIS 419/519 Applied Machine Learning. Eric Eaton, Dinesh Jayaraman. https://www.seas.upenn.edu/
~CIs519/spring2020/

Deep Learning Patterns and Practices - Andrew Ferlitsch, Maanning, 2021
Machine Learning Design Patterns - Lakshmanan, Robinson, Munn, 2020
Grokking Machine Learning. Luis G. Serrano. Manning, 2021

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020
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