Learning For Design

Lecture 4 - Machine Learning for Images / Part 2

Alessandro Bozzon

23/02/2022

mlfd-io@tudelft.nl www.ml4design.com

- Very few questions for Week 2 :(
- We will publish few quizzes for Week 2 today
- First group assignment next week!
 - Deadline next Tuesday

humans see?

Hubel and Wiesel, 1959

https://www.youtube.com/watch?v=IOHayh06LJ4

FIGURE 4.8 Response of a single cortical cell to bars presented at various orientations.

https://nba.uth.tmc.edu/neuroscience/m/s2/chapter15.html

Neural Correlation of Objects & Scene Recognition

Kanwisher et al. J. Neuro. 1997

Epstein & Kanwisher, Nature, 1998

Why is machine vision hard?

The deformable and truncated cat

Figure 1. The deformable and truncated cat. Cats exhibit (almost) unconstrained variations in shape and layout.

Parkhi et al. *The truth about cats and dogs*. 2011

Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects. Alcorn et al. 2019

https://arxiv.org/pdf/1811.11553.pdf

Computer Vision Challenges

Viewpoint Variation

A single instance of an object can be oriented in many ways with respect to the camera

Scale variation

Visual classes often exhibit variation in their size (size in the real world, not only in terms of their extent in the image)

Deformation

Many objects of interest are not rigid bodies and can be deformed in extreme ways

Occlusion

The objects of interest can be occluded. Sometimes only a small portion of an object (as little as few pixels) could be visible

Illumination Condition

The effects of illumination are drastic on the pixel level

Background clutter

The objects of interest may blend into their environment, making them hard to identify

Intra-class variation

The classes of interest can often be relatively broad, such as chair. There are many different types of these objects, each with their own appearance

How CV models work?

Flattening

d = width x height

:

Course of dimensionality

High dimensionality

- A 1024×768 image has d = 786432!
- A tiny 32×32 image has d = 1024
- Decision boundaries in pixel space are extremely complex
- We will need "big" ML models with lots of parameters
 - For example, linear regressors need d parameters

Downsampling

What about generalisation?

The "old days": Feature Extraction

Feature

- A relevant piece of information about the content of an image
 - e.g. edges, corners, blobs (regions), ridges
- A good feature
 - Is repeatable
 - Identifiable
 - can be easily tracked and compared
 - Is consistent across different scales, lighting conditions, and viewing angles
 - Is still visible in noisy images or when only part of an object is visible
 - can distinguish objects from one another

Feature Extraction Techniques https://www.vlfeat.org

Scale-Invariant Feature Transform (SIFT)

Co-variant feature detector

Histogram and oriented gradients

¥#\$ ≠}			★. * .+.	
****			1-1-1- 1-1 4-1-5-	₭₰ ₭₰
+++ +++	* <i>**</i> * ~ *	+ + + * + *	*** ***	j j j
* * *	114	÷ ₹₹ ₹ ች	***	**
				**
	\mathbb{R}		\mathcal{X}	

The "old days": Feature Engineering

- rely on domain knowledge (or partner with domain experts)
- Machine learning models are only as good as the features you provide To figure out which features you should use for a specific problem
- - experiment to create features that make machine learning algorithms work better

Performance

Object Detection (~2007)

Felzenszwalb, Ramanan, McAllester. A Discriminatively Trained, Multiscale, Deformable Part Model. CVPR 2008 (DPM v1)

Face Detection (~2013)

https://github.com/alexdemartos/ViolaAndJones

Convolutional Neural Networks

CNNs exploit image properties to drastically reduce the number of model parameters

Feature maps

- Automatically extracted hierarchical
- Retain spatial association between pixels

Translation invariance

- a dog is a dog even if its image is shifted by a few pixels
- Local interactions
 - all processing happens within very small image windows
 - within each layer, far-away pixels cannot influence nearby pixels

Convolution & Feature Maps

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020

Input image

Convolution kernel with optimized weights

(feature map)

Try this https://cs.stanford.edu/people/ karpathy/convnetjs/demo/mnist.html

What do CNN learn?

https://youtu.be/AgkflQ4lGaM

https://yosinski.com/deepvis

Feature Visualisation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Visualizing and Understanding Convolutional Network. Zeiler and Fergus, ECCV 2014

Visualizing and Understanding Convolutional Network. Zeiler and Fergus, ECCV 2014

Visualizing and Understanding **Convolutional Network.** Zeiler and Fergus, ECCV 2014

Network dissection

http://netdissect.csail.mit.edu

Translation Invariance

But not rotation and scaling invariance!

Data Augmentation

- Generate variations of the input data, to improve generalisability (out of distribution inputs)
 - Improve invariance (rotation, scaling, distortion)
- Geometric
 - Flipping
 - Color space
 - Cropping
 - Rotation
 - Translation
 - Noise Injection
- Color space transformation
- Mixing Images
- Random erasing
- Adversarial training
- GAN-based image generation
 - A survey on Image Data Augmentation for Deep Learning. Shorten, Journal of Big Data, 2019

Robustness to input variation

school bus 1.0 garbage truck 0.99 punching bag 1.0

motor scooter 0.99 parachute 1.0 bobsled 1.0

fire truck 0.99 school bus 0.98 fireboat 0.98

snowplow 0.92

parachute 0.54

bobsled 0.79

Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects. Alcorn et al. 2019

https://arxiv.org/pdf/1811.11553.pdf

Transfer Learning

- Problem: training custom ML models requires extremely large datasets
- Transfer learning: take a model that has been trained on the same type of data for a similar task and apply it to a specialised task using our own custom data.
 - **Same data**: same data modality. same types of images (e.g. professional pictures vs. Social media pictures)
 - **Similar tasks**: if you need a new object classification model, use a model pre-trained for object classification

Advanced Computer Vision Techniques

Generative Adversarial Networks

- Learn patterns from the training dataset and create new images that have a similar distribution of the training set
- Two deep neural networks that compete with each other
 - The generator tries to convert random noise into observations that look as if they have been sampled from the original dataset
 - The discriminator tries to predict whether an observation comes from the original dataset or is one of the generator's forgeries

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020

Generative Adversarial Networks

The generator's architecture looks like an inverted CNN that starts with a narrow input and is upsampled a few times until it reaches the desired size

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020

Generator

The discriminator's model is a typical classification neural network that aims to classify images generated by the generator as real or fake

Which face is real? - https://www.whichfaceisreal.com/

PLAY

ABOUT	METHODS	LEARN	PRESS	CONTACT	BOOK	CALLING B

Click on the person who is real.

https://thispersondoesnotexist.com/ 38

Image super-resolution GAN

A good technical summary https://blog.paperspace.com/ image-super-resolution/

https://newatlas.com/super-resolution-weizmann-institute/23486/

Synthetic Video Generation

Say goodbye to cameras, microphones and actors!

Create professional AI videos from text in 60+ languages.

40

Text-to-image Generation

an mustration of a baby da

Edit prompt or view more images↓

TEXT PROMPT an armchair in the shape of an avocado....

AI-GENERATED

IMAGES

TEXT PROMPT

AI-GENERATED

IMAGES

Edit prompt or view more images \downarrow

https://openai.com/blog/dall-e/

an illustration of a baby daikon radish in a tutu walking a dog

- ML-generated painting sold for \$432,500
- The network trained on a dataset of 15,000 portraits painted between the fourteenth and twentieth centuries
- Network "learned" the style, and generated a new painting

https://en.wikipedia.org/wiki/Edmond_de_Belamy

Neural Style Transfer

Content Image

Style Image

https://fluxml.ai/experiments/styleTransfer/

Stylized Result

43

https://replicate.com/rinongal/stylegan-nada

44

Deepfakes

45

Week 3 Tasks

- Have fun with the first assignment !
- Please contribute Week 3 questions we will share the link later
- See you on Friday!

47

Learning For

Lecture 3 - Machine Learning for Images

Alessandro Bozzon

16/02/2022

mlfd-io@tudelft.nl www.ml4design.com

Credits

- CMU Computer Vision course Matthew O'Toole. <u>http://16385.courses.cs.cmu.edu/spring2022/</u>
- ~cis519/spring2020/
- Deep Learning Patterns and Practices Andrew Ferlitsch, Maanning, 2021
- Machine Learning Design Patterns Lakshmanan, Robinson, Munn, 2020
- Grokking Machine Learning. Luis G. Serrano. Manning, 2021
- Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020

CIS 419/519 Applied Machine Learning. Eric Eaton, Dinesh Jayaraman. https://www.seas.upenn.edu/

49