
Machine
Learning For
Design
Lecture 6 - Machine Learning and Natural
Language Processing / Part 2

Alessandro Bozzon

09/03/2022

mlfd-io@tudelft.nl
www.ml4design.com

mailto:mlfd-io@tudelft.nl
http://www.ml4design.com

Previously,
on ML4D….

3

Machine Learning
Machine learning: observe a pattern of features and
attempt to imitate it in some way

A feature is an individual measurable property or
characteristic of a phenomenon

Choosing informative, discriminating and independent
features are essential for well-working ML

Test

Math

2

1

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

sepal_lenght sepal_width petal_lenght petal_width Class

5.0 3.3 1.4 0.2 Iris-setosa

7.0 3.2 4.7 1.4 Iris-versicolor

5.7 2.8 4.1 1.3 Iris-versicolor

6.3 3.3 6.0 2.5 Iris-virginica

LabelFeature Feature FeatureFeature

Da
ta

se
t S

ize

Dataset Dimensionality

Record / Sample / Data Item

Feature Value

Label Value

d = width x height Input layer size = d

Features
Images —> pixel values
(e.g. B/W, RGB)
Numbers —> OK

What about text?

4

Textual documents
A sequence of alphanumerical characters

Short: e.g. tweets
Long: e.g Web documents, interview transcripts

Features are (set of) words
Words are also syntactically and semantically organised

Feature values are (set of) words occurrences

Dimensionality —> at least dictionary size

I Wear Mask … W(n) Class

1 1 1 0 Spam

0 0 1 0 Not Spam

Spam

Document

5

Main types of NLP Tasks
Label a region of text

e.g. part-of-speech tagging, sentiment classification, or named-entity recognition

Link two or more regions of text
e.g. coreference (are two mentions of a real-world thing (e.g. a person, place, or some other named entity(
are in fact referencing the same real-world thing?

Fill in missing information (missing words) based on context

Languages
Representation
Language = vocabulary and its usage in a specific
context captured by textual data

7

Language Modeling
A collection of statistics learned over a particular language

Often used to
Measure how “important” (or descriptive) a word is in a given document collection

e.g. find the set of words that best describe multiple clusters (see Assignment 2)
Predict how likely a sequence of words is to occur in a given context

e.g. find the word(s) that is more likely to occur next

A good language model will give this sentence a high probability because this is a completely valid
sentence, syntactically and semantically

These probabilities are almost always empirically derived from a text corpora

8

The issue with representing words
Words are discrete symbols

Machine-learning algorithms cannot process symbolic information as it is

We need to transform the text into numbers

But we also need a way to express relationships between words!

9

A simple approach
Assign an incremental number to each word

cat = 1
dog = 2
pizza = 3

Problem: There is no notion of similarity!
Is a cat as semantically close (similar) to a dog as a dog is to a pizza

Also, no arithmetic operations
Does it make sense to calculate Dog - Cat to establish similarity?

10

Word Embeddings
Embed (represent) words in a numerical n-dimensional space

Approach 1: assign numbers to words, and put semantically
related words close to each other

We can now express that “dog is more related to cat than to pizza”
But is pizza more related to dog than to cat?

Approach 2: assign multiple numbers (a vector) to words
e.g. a 2-dimensional space

cat = [4,2], dog = [3,3], pizza = [1,1]

We can calculate distance (and similarity)
e.g. Euclidean, or Cosine (angles)

But what is the meaning of an axis?

1-Dimension

2-Dimensions

word representation

11

One-Hot Encoding
Each word in the vocabulary is represented by a one-bit position in a HUGE (sparse) vector

Vector dimension = size of the dictionary
There are an estimated 13 million tokens for the English language

For example
cat = [0,0,0,0,0,0,0,0,0,0,1,0,0,0,…,0]
dog = [0,0,0,0,0,0,0,1,0,0,0,0,0,0,…,0]
pizza = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,…,0]

Problems:
The size of the vector can be huge

Remember Zip’s law? Easy to reach 106 words
But we can use stemming, lemmatisation, etc

Still, no notion of similarity
Each word is an independent, discrete entity

Words ordered by their frequency

12

Independent and identically distributed words assumption

The simplest (inaccurate) language model assumes that each word in a text appears independently on the
others

The text is modelled as generated by a sequence of independent events

The probability of a word can be estimated as the number of times a word appears in a text corpus

But high probability does not mean important (or descriptive)

13

Measuring the importance of words
Term frequency TF

Measuring the importance of a word t to a document d
The more frequent, the more important to describe the document

Inverse document frequency IDF
Measuring the importance of a word t to a document collection
Rare terms are more important than common terms
If all (training) documents contain the word design, but only a few selected documents contain the word “machine”,
then machine is more discriminative in the document collection

TF-IDF
“Scaling” of a word’s importance (in a document) based on both its frequency and collections’ importance

14

N-gram Language models
A more accurate model takes into account the conditional probabilities among adjacent words (e.g. bi-grams)

We try to calculate the probability of a word w given a word w-1
e.g. computer network vs. computer pear

The model is more accurate but it is more difficult to be estimated with accuracy

The N-grams model dependencies deriving from
Grammatical rules

e.g. an adjective is likely to be followed by a noun
Semantic restrictions

e.g. Eat a pear vs. Eat a crowbar
Cultural restrictions

e.g. Eat a cat

The probabilities depend on the considered contexts

15

Limits of N-grams based LMs
The model accuracy increases with N

The syntactic/semantic contexts are better modelled

The drawback is the difficulty in the model parameter estimation (the conditional probabilities)
If the dictionary contains D terms (word forms with inflexions) there are DN N-grams

A corpus C words “long” contains C N-grams (each word generates exactly a sample for one N-gram)
For a significant estimate of the parameters, the corpus size should increase exponentially in the order N of N-grams
f.i. given D=30000 there are 900 million bigrams and a corpus with C=1.000.000 words would not be adequate to
compute an accurate estimate for the language (especially for the rarest bigrams)
Hence, the resulting model can be heavily dependent on the corpus exploited in the estimation of the parameters

They do not generalise to unseen words sequences

What about using machine learning?

When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size
window)

Distributional semantics: A word’s meaning is given by the words that frequently appear close-by

For example: look at the following contexts:
(1) A bottle of ___ is on the table
(2) Everybody likes ___
(3) Don’t have ___ before you drive
(4) We make ___ out of corn

What other words fit into these contexts?

1 2 3 4
tezgüino 1 1 1 1

loud 0 0 0 0
motor oil 1 0 0 1
tortillas 0 1 0 1
choices 0 1 0 0

wine 1 1 1 0

16

Representing words by their contexts

tezgüino
word

representation

Contextual
similarity

17

Representing words by their contexts
When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size
window)

Distributional semantics: A word’s meaning is given by the words that frequently appear close-by

For example: look at the following contexts:
(1) A bottle of ___ is on the table
(2) Everybody likes ___
(3) Don’t have ___ before you drive
(4) We make ___ out of corn

What other words fit into these contexts?

“You shall know a word by the company it
keeps”

The distributional hypothesis, John Firth
(1957)

The contexts in which a word appears tell us a
lot about what it means.

Words that appear in similar contexts have
similar meanings

18

Distributional Word Embeddings
Define dimensions that allow expressing a context

The vector for any particular word captures how strongly it is associated with each
context

For instance, on a 3-dimensional space, the axis could have the semantic meaning
x-axis represents some concept of "animal-ness"
z-axis corresponds to "food-ness"

Of course, defining these axes is very difficult
How many?

Hopefully, a lot less than the size of the dictionary (dense vectors)
But at least ~100-dimensional, to be effective

Also, how do we assign the values associated with the vectors?
Tens of millions of numbers to tweak

How about using machine learning models? —> later

3-Dimensions

animal-ness

food-ness

cat = [0.7,0.5,0.1]
dog = [0.8,0.3,0.1]
pizza = [0.1,0.2,0.8]

Word
Embeddings with
Machine Learning

20

How to calculate Word Embeddings?
By calculating co-occurrence counts on the whole dataset

Full document: Latent Semantic Analysis
Window: SVD Based Methods

Iteration Based Methods: learn one iteration (e.g. sentence) at a time
Word2Vec

21

Word-Document Matrix
Words that are related will often appear in the same documents

E.g. banks, bonds, stocks, money, etc. are probably likely to appear together

But banks, octopus, banana, and hockey are probably less likely

Example corpus:
D1: I like deep learning.

D2: I like NLP.

D3: I enjoy flying.

The result is a very large matrix
Size is a function of the number of words and number of documents

Then reduce dimensionality using Singular Value Decomposition (SVD)

D1 D2 D3
I 1 1 1

Like 1 0 0
enjoy 0 1 0
deep 1 0 0

learning 1 0 0
NLP 0 1 0
flying 0 0 1

. 1 1 1

22

Window based co-occurrence matrix
Window length 1 (more common: 5–10)
Symmetric (irrelevant whether left or right context)

Example corpus:
D1: I like deep learning.
D2: I like NLP.
D3: I enjoy flying.

I like enjoy deep learning NLP flying .

I 0 2 1 0 0 0 0 0
Like 2 0 0 1 0 1 0 0
enjoy 1 0 0 0 0 0 1 0
deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1
NLP 0 1 0 0 0 0 0 1
flying 0 0 1 0 0 0 0 1

. 0 0 0 0 1 1 1 0

23

Co-Occurrence Vectors
Simple count co-occurrence vectors

Vectors increase in size with vocabulary
Very high dimensional: require a lot of storage (though sparse)
Subsequent classification models have sparsity issues -> Models are less robust

Low-dimensional vectors
Idea: store “most” of the important information in a fixed, small number of
dimensions: a dense vector
Usually 25–1000 dimensions

Dimensionality reduced through Singular Value Decomposition (SVD)

24

Problems with co-occurrence approaches
The calculated word vectors are more than sufficient to encode semantic and syntactic (part of speech)
information
But there are many other problems:

The dimensions of the matrix change very often (new words are added very frequently and corpus changes in size)
The matrix is extremely sparse since most words do not co-occur.
The matrix is very high dimensional in general
Very expensive to train (i.e. to perform SVD)

Some clever intervention is needed to adjust the co-occurrence matrix to account for the imbalance in word
frequency

Ignore stopwords
Apply a ramp window – i.e. weight the co-occurrence count based on the distance between the words in the document.
Use Pearson correlation and set negative counts to 0 instead of using just raw count

Iteration-based methods solve many of these issues

25

Iteration Based Methods - Word2Vec
Idea: Design a model whose parameters are the word vectors

Train a simple neural network with a single hidden layer, using a certain objective
At every iteration, evaluate the errors, penalize the model parameters that caused the error

How?
Consider a large corpus of text
Define a vocabulary of words and associate each word to a row of the embedding matrix initialised at random
Go through each position in the text, which has a centre word and a context around it (fixed window)
Adjust the word vectors to minimise a prediction error

Predicting what?
Estimate the probability of context given the centre word (SKIPGRAM)
Estimate the probability of the centre word given its context (CBOW)

26

SKIPGRAM
Predicts the probability of context words from a centre word

Input: one-hot vector of the centre word (size of the vocabulary)
Output: a single vector; for every word the probability that a word is selected to be in the context window

When training this network on word pairs, the input is a one-hot vector representing the input word and the training
output is also a one-hot vector representing the output word

Each word is generated multiple times
each time it is conditioned only on a single word

tezgüino

???? ?? ??

27

SKIPGRAM Example

One-hot input vector

Size of vocabulary

This is the word vector that
we want to learn

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

28

CBOW - Continous Bag of Word
Predict a centre word from the surrounding context in terms of word vectors

Bag-of-words model: because the order of the context words does not matter
Continuous: condition on a continuous vector constructed from the word embeddings

Input: multiple one-hot vectors (one per context word)
Output: a single vector, for every word the probability that a word is selected to be the right one
for the context
The dimension of the hidden layer is the same as for SKIPGRAM

Skip-gram: works well with a small amount of the training data, represents well even rare words
or phrases.
CBOW: several times faster to train than the skip-gram, slightly better accuracy for the frequent
words.

a bottle of is on the

??

29

Issues
Results are in general impressive, but

Multi-sense words (e.g. bank)
Possible solution: multi-sense word embeddings

Fixed-size vocabulary: new words are not learned
Out of Vocabulary words are represented with the same dense vector

No information about sub-word structure: morphology is completely ignored
Possible solution: character-based word representation

e.g. Facebook’s FastText (https://fasttext.cc)

https://fasttext.cc

Using Word
Embeddings

31

Why are embeddings important
They are essential for using neural networks to solve NLP tasks
They bridge the symbolic (discrete) world of words with the numerical (continuous) world of neural
networks

32

Word embeddings can be trained, but sometimes you just
want to reuse them

Three scenarios
Scenario 1: Train word embeddings and your model at the same
time using the train set for your task

Scenario 2: initialize your model using the pre-trained word
embeddings, and train them (fine-tune) and your model at the
same time using the train set for your task

A large amount of plain text data (e.g. Wikipedia dumps), which are
usually more readily available than the train datasets for your task
This is an example of transfer learning

Scenario 3: Same as Scenario 2, except you fix word
embeddings while you train your model

How can embeddings be used with NLP Models?

33

Use Word2vec in your work
Easiest way to use it is via the Gensim library for Python (tends to be slowish, even
though it tries to use C optimizations like Cython, NumPy)

https://radimrehurek.com/gensim/models/word2vec.html

Original word2vec C code by Google
https://code.google.com/archive/p/word2vec/

Use pre-trained word vectors whenever possible
Glove: https://nlp.stanford.edu/projects/glove/
fastText: https://fasttext.cc/docs/en/english-vectors.html

Evaluating
Word
Embeddings

35

Related to a general evaluation in NLP: Intrinsic vs. extrinsic

Intrinsic: evaluation on a specific/intermediate subtask [analogy]
Fast to compute
Helps to understand that system
Not clear if really helpful unless correlation to the real task is established

Extrinsic: evaluation on a real task
Can take a long time to compute the accuracy
Unclear if the subsystem is the problem or it is an interaction with other subsystems

How to evaluate word vectors?

36

Intrinsic word evaluation
Word vector analogies

Evaluation: find a word such that the vector is closest to vec[man]-
vec[woman]+vec[king] according to the cosine similarity	

Correct if the word found is queen

Can be applied to test for syntactic analogy as well
Quick:quickly = slow:slowly

a:b = c:?
man:woman = king: ?

37

Gender relation

38

Company - CEO

39

Comparatives and Superlatives

40

Countries and their capital

41

But are word embeddings so good?
By exploring the semantic space, you can also find analogies like

Thirsty is to drink as tired is to drunk
Fish is to water as bird is to hydrant

42

But are word embeddings so good?
By exploring the semantic space, you can also find analogies like

Thirsty is to drink as tired is to drunk
Fish is to water as bird is to hydrant

Man is to woman as computer programmer is to ______
Woman is to man as computer programmer is to ______
Man is to genius as woman is to______
Woman is to genius as man is to ______

43

But are word embeddings so good?
By exploring the semantic space, you can also find analogies like

Thirsty is to drink as tired is to drunk
Fish is to water as bird is to hydrant

Man is to woman as computer programmer is to ______
Woman is to man as computer programmer is to ______
Man is to genius as woman is to______
Woman is to genius as man is to ______

Biases in word vectors might seep through to produce unexpected, hard-to-predict biases in
widely used NLP applications

geniuses
muse

Mechanical engineer
Homemaker

Extra:
Recurrent
Neural Networks

45

Traditional neural networks can consider only a finite window of previous words
Also, the behaviour does not depend on the order in which inputs are presented

Recurrent Neural Networks are capable of conditioning the model on ALL
previous words

inspired by ideas on how the brain interprets sequences

The hidden state has feedback connections that pass information about the past
to the next input

Output can be produced at any step or only at the end of the sequence

How to train an RNN?
feedback connections create loops, which is a problem since the update of weight
depends on itself at the previous time step.
Solution: a recurrent neural network processing a sequence of length T is equivalent
to a feedforward network obtained by the unfolding of the RNN T times
The unfolded network is trained with standard backpropagation with weight sharing

Recurrent Neural Network

46

47

48

49

50

What are RNNs for?
Recurrent Neural Networks can be used in a variety of scenarios depending on how the inputs are fed and
the outputs are interpreted

Sequential input to sequential output
Machine translation / part-of-speech tagging and language modelling tasks lie within this class

Sequential input to single output.
e.g sentiment analysis, in which we fed a sentence and we want to classify it as positive, neutral or negative

Single input to sequential output
e.g. image captioning: where we fed a picture to the RNN and want to generate a description of it

51

RNNs can be used for tagging
e.g., part-of-speech tagging, named entity recognition

52

Sentence Classification
e.g., sentiment classification

53

Pros and cons
RNN Advantages:

Can process any length input
Computation for step t can (in theory) use information from many steps back
Model size doesn’t increase for longer input context

RNN Disadvantages:
Recurrent computation is slow
In practice, difficult to access information from many steps back (gradient vanishing problem

http://neuralnetworksanddeeplearning.com/chap5.html#the_vanishing_gradient_problem

http://neuralnetworksanddeeplearning.com/chap5.html

Admin

55

ITD Exhibition
This Friday the Masters students on the Interactive Technology Design
course will be having a small exhibition of prototypes made with AI systems -
you’ll see some Teachable Machine pose and object detection, some
VoiceFlow conversational agents and if the technology works, some
EdgeImpulse physical gesture recognition.
These are all very early sketches, so expect to see lots of cardboard and
string, but also interesting ideas about how AI models might be applied in
context.

Come and find us at 16:00 in the basement studios K1-K5 and ’The Pit’

56

Week 5 Tasks
Submit questions for Week 5

https://forms.office.com/r/h7KwSwGR0c

Feel free to submit new questions for the previous weeks!

Give us your feedback about Module 1
11 responses so far
https://forms.office.com/r/wp9Lnt32FL

https://forms.office.com/r/wp9Lnt32FL

Machine
Learning For
Design
Lecture 6 - Machine Learning and Natural
Language Processing / Part 2

Alessandro Bozzon

09/03/2022

mlfd-io@tudelft.nl
www.ml4design.com

mailto:mlfd-io@tudelft.nl
http://www.ml4design.com

58

Credits
CIS 419/519 Applied Machine Learning. Eric Eaton, Dinesh Jayaraman. https://www.seas.upenn.edu/
~cis519/spring2020/
EECS498: Conversational AI. Kevin Leach. https://dijkstra.eecs.umich.edu/eecs498/
CS 4650/7650: Natural Language Processing. Diyi Yang. https://www.cc.gatech.edu/classes/AY2020/
cs7650_spring/
Natural Language Processing. Alan W Black and David Mortensen. http://demo.clab.cs.cmu.edu/NLP/
IN4325 Information Retrieval. Jie Yang.
Speech and Language Processing, An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition. Third Edition. Daniel Jurafsky, James H. Martin.
Natural Language Processing, Jacob Eisenstein, 2018.

https://www.seas.upenn.edu/~cis519/spring2020/
https://www.seas.upenn.edu/~cis519/spring2020/
https://www.seas.upenn.edu/~cis519/spring2020/
https://www.seas.upenn.edu/~cis519/spring2020/
https://dijkstra.eecs.umich.edu/eecs498/
http://demo.clab.cs.cmu.edu/NLP/

