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Machine Learning

Machine learning: observe a pattern of features and

attempt to imitate it in some way

A feature is an individual measurable property or

characteristic of a phenomenon

Choosing informative, discriminating and independent

features are essential for well-working ML
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Textual documents

B A seguence of alphanumerical characters

B Short: e.g. tweets

B [ ong: e.g Web documents, interview transcripts

yoroor . I wear this mask to sing lullabies to my
children ..., 24 May 2015

By Sir Chubs

B [Features are (set of) words e i T

This review is from: Overhead Rubber Penguin Mask Happy Feet
Animal Fancy Dress (Toy)

_ WOrdS are a|SO SyﬂtaCTICa||y aﬂd Semaﬂtha”y Orgaﬂlsed I wear this mask to sing lullabies to my children. They are

terrified of the mask. Whenever they protest about their bed
time, or ask for too many sweets, I whip on the mask, and
they soon know who is the King Penguin.

B Feature values are (set of) words occurrences

Spam

1| Wear | Mask | .. | W@ | Ciass
Document 1 1 1 0

0 0 1 0 Not Spam

B Dimensionality —> at least dictionary size




Main types of NLP Tasks

B | abel a region of text
B c.g. part-of-speech tagging, sentiment classification, or named-entity recognition

B | ink two or more regions of text

B e.g. coreference (are two mentions of a real-world thing (e.g. a person, place, or some other named entity(
are in fact referencing the same real-world thing??

B Fill in missing information (missing words) based on context




Languages
Representation

Language = vocabulary and its usage in a specific
context captured by textual data




Language Modeling

B A collection of statistics learned over a particular language

B Often used to
B Measure how “important” (or descriptive) a word is in a given document collection
B c.g. find the set of words that best describe multiple clusters (see Assignment 2)

B Predict how likely a sequence of words Is to occur in a given context
B c.g. find the word(s) that is more likely to occur next

B A good language model will give this sentence a high probability because this is a completely valid
sentence, syntactically and semantically

B [hese probabilities are almost always empirically derived from a text corpora
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The issue with representing words

B \\Nords are discrete symbols

B Machine-learning algorithms cannot process symbolic information as it Is

B \\e need to transform the text into numbers
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A simple approach

B Assign an incremental number to each word
B cat=1
B Jdog =2

B pizza =3

B Problem: There is no notion of similarity!

B [s acat as semantically close (similar) to a dog as a dog is to a pizza

B Also, no arithmetic operations

B Does it make sense to calculate Dog - Cat to establish similarity?




Word Embeddings

B Embed (represent) words in a numerical n-dimensional space

1-Dimension

pizza dog cat

B Approach 1: assign numbers to words, and put semantically o o o

related words close to each other . L
B \\e can now express that “dog is more related to cat than to pizza” +—t 1ttt X
B But is pizza more related to dog than to cat?

2-Dimensions

B Approach 2: assign multiple numbers (a vector) to words - 1

B c.g.aZ2-dmensional space T o dog
B cat =[4,2] dog = [3,3], pizza =[1,1] * word representation + et

m \We can calculate distance (and similarity) opzza | |
m c.g. Euclidean, or Cosine (angles) —t—1— B e s
B But what is the meaning of an axis?
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One-Hot Encoding

B [or example

B catl (6,0,0,0,0,0,0,0,0,0,1,0,0,0,..,0]

English

B Each word in the vocabulary is represented by a one-bit position in a HUGE (sparse) vector
B \ector dimension = size of the dictionary
B [here are an estimated 13 million tokens for the English language

Words ordered by their frequency

Spanish

(¢,0,0,0,0,0,0,1,0,0,0,0,0,0,..,0]
(1,0,0,0,0,0,0,0,0,0,0,0,0,0,..,0]

B (o9
B Dizza

— -
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Frequency

B Problems:
he size of the vector can be huge

10°

B Remember Zip’s law”? Easy to reach 108 words
B But we can use stemming, lemmatisation, etc

B Still, no notion of similarity
B [Each word is an independent, discrete entity
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Independent and identically distributed words assumption

B The simplest (inaccurate) language model assumes that each word in a text appears independently on the
others

B [he text is modelled as generated by a sequence of independent events
B [he probability of a word can be estimated as the number of times a word appears in a text corpus

B But high probability does not mean important (or descriptive)
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Measuring the importance of words

Boolean: if, , = 1 if ¢ occursin d, 0 otherwise

Raw Counts: tf, ;= ¢, 4

H Term frequency TF o ¢ 4isthe number of times ¢ occursin d
' ' 1 l t f 0
m  Measuring the importance of a word t to a document d Log-Scaled Counts: 17, = { '8¢ (i ¢
B [he more frequent, the more important to describe the document o Reduces relative impact of frequent terms

Normalized Counts: tf, , = ¢, ; /|4
o Normalize raw counts by length of document |d|

B |nverse document frequency |IDF
B Measuring the importance of a word t to a document collection

1 | ] . X
B Rare terms are more important than common terms wdf 4, x = log (| X|t| -|+- 1)

B |f all (training) documents contain the word design, but only a few selected documents contain the word *machine”,
then machine is more discriminative in the document collection

m [F-|DF tﬁdft,d,x = tft,d X z'dft,x

B “Scaling” of a word’s importance (in a document) based on both its frequency and collections’ importance
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N-gram Language models

B A more accurate model takes into account the conditional probabilities among adjacent words (e.g. bi-grams)

B \\Ve try to calculate the probability of a word w given a word w-!
B c.g. computer network vs. computer pear

B [he model iIs more accurate but it is more difficult to be estimated with accuracy

B [he N-grams model dependencies deriving from eat on 016 leat Thai 003

B Grammatical rules eatsome | 0.06 | eat breakfast | 0.03

B c.g. an adjective is likely to be followed by a noun eat lunch 0.06 | eatin 0.02

B Semantic restrictions p(w\eat) eatdinner | 0.05 | eat Chinese | 0.02

B c.g. Fat a pear vs. Eat a crowbar eat at 0.04 ) eat Mexican | 0.02

B Cultural restrictions eat a 0.04 | eat tomorrow | 0.01
eat indian 0.04 | eatdessert | 0.007
" eg katacal eat today 0.03 | eat British 0.001

B The probabilities depend on the considered contexts

14




Limits of N-grams based LMs

B [he model accuracy increases with N
B [he syntactic/semantic contexts are better modelled

B [he drawback is the difficulty in the model parameter estimation (the conditional probabilities)

B |f the dictionary contains D terms (word forms with inflexions) there are DN N-grams
B A corpus C words “long” contains C N-grams (each word generates exactly a sample for one N-gram)
B [or asignificant estimate of the parameters, the corpus size should increase exponentially in the order N of N-grams

B f.i. given D=30000 there are 900 million bigrams and a corpus with C=7.000.000 words would not be adequate to
compute an accurate estimate for the language (especially for the rarest bigrams)

B Hence, the resulting model can be heavily dependent on the corpus exploited in the estimation of the parameters
B [hey do not generalise to unseen words sequences

B \Vhat about using machine learning"”’

15



Representing words by their contexts

B \\Vhen a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size
window)

B Distributional semantics: A word’s meaning is given by the words that frequently appear close-by

B [For example: look at the following contexts:
1) A bottle of ___ is on the table

(
B (?) Everybody likes

B (3) Don’t have ___ before you drive
B (4) We make ___ out of corn tezguino 1
loud O 0 O 0
motor ol 1 O 0 1
B \Vhat other words fit into these contexts”? fortilas O - 0 :
choices 0 0 0
wine 1 1 0

16



Representing words by their contexts

B \\Vhen a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size
window)

B Distributional semantics: A word’s meaning is given by the words that frequently appear close-by

B [For example: look at the following contexts: “You shall know a word by the company it
m (1) Abottle of ___is on the table keeps
" (2) Bverypody likes __ The distributional hypothesis, John Firth
m (3) Don’t have ____ before you drive (1957)
(4)

4) We make  out of corn

The contexts iIn which a word appears tell us a

_ it ] 7 |
What other words fit into these contexts” lot about what it means.

Words that appear in similar contexts have
similar meanings

17



Distributional Word Embeddings

B Define dimensions that allow expressing a context

B [he vector for any particular word captures how strongly it is associated with each
context

B [or instance, on a 3-dimensional space, the axis could have the semantic meaning -

B x-axis represents some concept of "animal-ness”
B 7-axis corresponds to "food-ness”

B Of course, defining these axes is very difficult
B How many?

B Hopefully, a lot less than the size of the dictionary (dense vectors)
B But at least ~100-dimensional, to be effective

B Also, how do we assign the values associated with the vectors?
B Jens of millions of numbers to tweak

B How about using machine learning models? —> later

3-Dimensions

2 food-ness
A

“T-9pizza

| —+» Yy
animal-ness 4
cat = [0.7,0.5,0.1]
dog = [0.8,0.3,0.1]

pizza = [0.1,0.2,0.8]

18



Word
Embeddings with
Machine Learning




How to calculate Word Embeddings?

B By calculating co-occurrence counts on the whole dataset

B [ull document: Latent Semantic Analysis
B \Window: SVD Based Methods

B |teration Based Methods: learn one iteration (e.g. sentence) at a time
B \Word2Vec

20



Word-Document Matrix

B \Nords that are related will often appear in the same documents
B [E.g. banks, bonds, stocks, money, etc. are probably likely to appear together

B But banks, octopus, banana, and hockey are probably less likely

B Example corpus:
B D1/ /ike deep learning.
B D2://ike NLP

B D3:/enjoy flying.

B [he result is a very large matrix

B Size is a function of the number of words and number of documents

B Then reduce dimensionality using Singular Value Decomposition (SVD)

. Di__D2 D3
| 1

Like
enjoy
deep

learning
NLP

flying

mxn

;
1 0
0 1
1 0
1 0
O 1
0 0
1 1

— 4 OO0 OO0 o —

=

> Vv

mxm mMxn nNxn
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Window based co-occurrence matrix

B \WVindow length 1 (more common: 5-10)

B Symmetric (irrelevant whether left or right context)

= Example corpus: 1| ke | enioy | deep eaming, NP thiog |
1 O 0 0 0

B D1:/like deep learning. Li:(e (2) (2) . 1 : 1 : g
m D2://ke NLF, enioy 1 0 0 0 0 0 : 0
B D3:/enjoy flying. deep 0 1 0 0 1 0 0 0
learning 0 0 0 1 0 0 0 1

NLP 0 1 0 0 0 0 0 1

flying 0 0 1 0 0 0 0 1

0 0 0 0 1 1 1 0




Co-Occurrence Vectors

B Simple count co-occurrence vectors
B \/ectors increase in size with vocabulary
B \ery high dimensional: require a lot of storage (though sparse)
B Subseqguent classification models have sparsity issues -> Models are less robust

B | ow-dimensional vectors
B [dea: store "most” of the important information in a fixed, small number of
B dimensions: a dense vector
B Usually 25-1000 dimensions

B Dimensionality reduced through Singular Value Decomposition (SVD)

=
= > V

mxn mxm mMxn nNxn
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Problems with co-occurrence approaches

B [he calculated word vectors are more than sufficient to encode semantic and syntactic (part of speech)
iInformation

B But there are many other problems:

B T[he dimensions of the matrix change very often (new words are added very frequently and corpus changes in size)

ne maitrix Is extremely sparse since most words do not co-occur.

H
B The matrix is very high dimensional in general
H

Very expensive to train (i.e. to perform SVD)

B Some clever intervention is needed to adjust the co-occurrence matrix to account for the imbalance in word
frequency

B |gnore stopwords
B Apply a ramp window — i.e. weight the co-occurrence count based on the distance between the words in the document.
B Use Pearson correlation and set negative counts to O instead of using just raw count

B [teration-based methods solve many of these issues

24



lteration Based Methods - Word2Vec

B [dea: Design a model whose parameters are the word vectors
B [rain a simple neural network with a single hidden layer, using a certain objective
B At every iteration, evaluate the errors, penalize the model parameters that caused the error

B How?
B (Consider a large corpus of text
B Define a vocabulary of words and associate each word to a row of the emlbedding matrix initialised at random
B (5o through each position in the text, which has a centre word and a context around it (fixed window)
B Adjust the word vectors to minimise a prediction error

P(we_y | W) P(Weyo | We)
. . P(we_q | W) P(Weiq | we)
B Predicting what” , .
. . . ... problems turning banking crises as ..
B Estimate the probability of context given the centre word (SKIPGRAM) l U | ,
: . . . outside context words center word outside context words
B Estimate the probability of the centre word given its context (CBOW) inwindow of size 2 at positiont in window of size 2

25



SKIPGRAM

B Predicts the probability of context words from a centre word

B |nput: one-hot vector of the centre word (size of the vocabulary)

B Output: a single vector; for every word the probability that a word is selected to be in the context window

B \Vhen training this network on word pairs, the input is a one-hot vector representing the input word and the training
output Is also a one-hot vector representing the output word

B Each word is generated multiple times
B cach time it is conditioned only on a single word

26



Scores Probability
Distribution

SKIPGRAM Example .

A B

This Is the word vector that

we want to learn

Traini One-hot input vector
raining

Samples

Source Text

Output Layer
-quick brown |fox jumps over the lazy dog. == (the, quick) Softmax Classifier
(the, brown)

H Idden Layer Probability that the word at a
Linear Neurons - randomly chosen, nearby
. . Input Vector position is “abandon”
The brown [fox|jumps over the lazy dog. = (quick, the) vy

(quick, brown)
(quick, fox)

... “ability”

The quick-fox jumps|over the lazy dog. = (brown, the)
(brown, quick)

o |0 H OI0O|I0O|0O|O|0 |0
A 4
. ‘ N . A v )‘3 - \ //// J"‘
X > [y X Y
\ / / 4 “‘ -
o
=
m\

(brown, fox) AL’ in the position
. corresponding to the —
(brown, jumps) word “ants”
The|quick brown-jumps over |the lazy dog. = (fox, quick) I
(fox, brown) 0
fox, jumps
(fox, jumps) 10000
(fOX, Over) positions

300 neurons —— .. "“zone”

10,000

Size of vocabulary /

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/ o



CBOW - Continous Bag of Word

B Predict a centre word from the surrounding context in terms of word vectors
B Bag-of-words model: because the order of the context words does not matter
B Continuous: condition on a continuous vector constructed from the word embeddings

B |nput: multiple one-hot vectors (one per context word)

B Output: a single vector, for every word the probability that a word is selected to be the right one
for the context

B The dimension of the hidden layer is the same as for SKIPGRAM

B Skip-gram: works well with a small amount of the training data, represents well even rare words
or phrases.

B CBOW: several times faster to train than the skip-gram, slightly better accuracy for the frequent
WOrds.

R oot B o
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Issues

B Results are In general impressive, but

B Multi-sense words (e.g. bank)
B Possible solution: multi-sense word embeddings

B Fixed-size vocabulary: new words are not learned
B QOut of Vocabulary words are represented with the same dense vector

B No information about sub-word structure: morphology is completely ignored
B Possible solution: character-based word representation
B e.g. Facebook’s FastText (https://fasttext.cc)

29


https://fasttext.cc

Using Word
Embeddings




Why are embeddings important

B [hey are essential for using neural networks to solve NLP tasks

B They bridge the symbolic (discrete) world of words with the numerical (continuous) world of neural
NEtWOrks

The issue with representing words

® \Words are discrete symbols

® Machine-learning algorithms cannot process symbolic information as it is

® We need to transform the text into numbers

® But we also need a way to express relationships between words!

10




How can embeddings be used with NLP Models?

B \Vord embeddings can be trained, but sometimes you just
want to reuse them

B [hree scenarios

B Scenario 1: Train word embeddings and your model at the same

time using the train set for your task

B Scenario 2: initialize your model using the pre-trained word
embeddings, and train them (fine-tune) and your model at the
same time using the train set for your task

B A large amount of plain text data (e.g. Wikipedia dumps), which are
usually more readily available than the train datasets for your task

B [his s an example of transfer learning

B Scenario 3. Same as Scenario 2, except you fix word
embeddings while you train your model

Prediction

t

[

NLP
Model

]

T

dog

T

chocolate

<

axa»® @@ xxXDO)

cat

o

Training data

Word
embeddings

I

N

Large text data

Words

/

[ hidden layers \

: output layer

\\\
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Use Word2vec in your work

B Fasies

thougr

it tries to use C opt

- way to use it is via the Gensim library

or Py

imizations like Cyth

on, N

hon (tends to be slowish, even

UMPYy)

B Nhttps://radimrehurek.com/gensim/models/word2vec.html

B QOriginal word2vec C code by Google
B Nhttps://code.google.com/archive/p/word2vec/

B Use pre-trained word vectors whenever possible
B Glove: https://nlp.stanford.edu/projects/glove/
B fastlext: https://fasttext.cc/docs/en/english-vectors.html




Evaluating
Word
Embeddings




How to evaluate word vectors?

B Related to a general evaluation in NLP: Intrinsic vs. extrinsic

B Intrinsic: evaluation on a specific/intermediate subtask [analogy]
B [ast to compute
B Helps to understand that system

B Not clear If really helpful unless correlation to the real task is established

B Extrinsic: evaluation on a real task
B Can take a long time to compute the accuracy

B Unclear if the subsystem is the problem or it is an interaction with other subsystems
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Intrinsic word evaluation

B \\Nord vector analogies

a:b =c:?

man:woman = king: ?

B Evaluation: find a word such that the vector is closest to vec/many-
vec/woman/+veclking| according to the cosine similarity

B Correct if the word found is queen

B Can be applied to test for syntactic analogy as well
B Quick:quickly = slow:slowly

D.75

0.5

0.25

Mman

woman

0.25

0.5

0.75
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Gender relation

0.5
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0.2

0.1
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; duchess—

/
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0 0.1 0.2
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Company - CEO

0.8 I T T l I T T
0.6 N
Caterpillar— _
0.4} Chrysler.‘ e sk 4 R e &
United— _ _ B = ol
R Bt et S 0 — —+ Oberhelman

e — ~Marchionne

0.2 =50 (a0 Len i UG WO BN R o e =
——————— ~ _—_,Smisek
Tillerson

Wal-Mart— — — — - = = — — = = = — — = — — — —o McMillon
0+ Citigroup, _ -

BMr = e e a e s s Corbat

Rometty
-0.2 %
: SRS B R S SRS e Sl G iy Dauman
Viacom McAdam
e e 2 00ldD
—0.4 [ s _,.""—””—'-” e —
Nehzohe- 7 avcv =
Vodafone
-0.6 g
—08 | | | | | | |
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.8
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Comparatives

and Superlatives

05 | | | | | | | | |
_ _ — — slowest
0.4 e .
cslower L - shortest
P el e
03k Pl ~ shorter i
slow -
F 3
> 3
short~
0.2 .
0.1 e
O S Shongers ence BT e strongest =
/ -
i ][5 117 (- T et ,
strong ¢ e loudest
—0.1F ond e s B
. GEAISL. o s e — clearest
CSOler s e
P — — — - softest
0.2 g .
o glear e« ndaker s el Ao
o = ——
soft « - arkest
dark «
-0.3 | 1 | | | | | | |
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 §57 0.6
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Countries and their capital

| 'China - I | | | |
—® Beijing
= Russia
Japan : ’
P ® Moscow
>0 —@Tokyo
Urkeyie- Ankara
Poland
- Germany o
France e— WarEE
e "o Berlin
. taly e— —Igzris
Greece o —e—>® Athens
. Spain Rome
o- Madrid
— Portugal —®Lisbon
| | | | | | |




But are word embeddings so good?

B By exploring the semantic space, you can also find analogies like
B [hirsty IS to drink as tired Is to drunk
B [/sh is to water as bird Is 1o hydrant

41



But are word embeddings so good?

B By exploring the semantic space, you can also find analogies like
B [hirsty IS to drink as tired Is to drunk
B [/sh is to water as bird Is 1o hydrant

Man is to woman as computer programmer is to
Woman is to man as computer programmer is to
Man is to genius as woman is to
\WWoman is to genius as man is to

42



But are word embeddings so good?

B By exploring the semantic space, you can also find analogies like
B [hirsty IS to drink as tired Is to drunk
B [/sh is to water as bird Is 1o hydrant

Man is to woman as computer programmer is to
Woman is to man as computer programmer is to
Man is to genius as woman is toi
Woman is to genius as man is to

B Bjases in word vectors might seep through to produce unexpected, hard-to-predict biases Iin
widely used NLP applications
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Recurrent
Neural Networks




Recurrent Neural Network

B [raditional neural networks can consider only a finite window of previous words
B Also, the behaviour does not depend on the order in which inputs are presented

B Recurrent Neural Networks are capable of conditioning the model on ALL
previous words

B nspired by ideas on how the brain interprets sequences

B [he hidden state has feedback connections that pass information about the past
to the next input

Qutput can be produced at any step or only at the end of the sequence

B How to train an RNN?

feedback connections create loops, which is a problem since the update of weight
depends on itself at the previous time step.

Solution: a recurrent neural network processing a sequence of length T is equivalent
to a feedforward network obtained by the unfolding of the RNN T times

The unfolded network Is trained with standard backpropagation with weight sharing
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Output Distribution
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Output Distribution
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Output Distribution
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Output Distribution

show movie the video

U

\

v

|

will watch a
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What are RNNs for?

B Recurrent Neural Networks can be used In a variety of scenarios depending on how the inputs are fed and
the outputs are interpreted

B Sequential input to sequential output
B Machine translation / part-of-speech tagging and language modelling tasks lie within this class

B Sequential input to single output.
B ¢c.g sentiment analysis, in which we fed a sentence and we want to classity it as positive, neutral or negative

B Single input to sequential output
B c.g. Image captioning: where we fed a picture to the RNN and want to generate a description of it

50



RNNs can be used for tagging

B ¢c.g., part-of-speech tagging, named entity recognition

DT JJ NN VBN IN DT NN

N N

.
:

—— 0000
— 0000
— 0000

:

the startled cat knocked over the vase




Sentence Classification

B c.g., sentiment classification

Sentence
encoding

T

enjoyed the movie

— 0000
— 0000 |

%’

overall
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Pros and cons

B RNN Advantages:
B Can process any length input
B Computation for step t can (in theory) use information from many steps back

B Model size doesn’t increase for longer input context

B RNN Disadvantages:
B Recurrent computation is slow

B |n practice, difficult to access information from many steps back (gradient vanishing problem

http://neuralnetworksanddeeplearning.com/chap5.html#the vanishing_gradient problem
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ITD Exhibition

B [his Friday the Masters students on the Interactive Technology Design
course will be having a small exhibition of prototypes made with Al systems -
vou'll see some Teachable Machine pose and object detection, some
Voicerlow conversational agents and If the technology works, some
Edgelmpulse physical gesture recognition.

B [hese are all very early sketches, so expect to see lots of cardboard and
string, but also interesting ideas about how Al models might be applied In
context.

B Come and find us at 16:00 in the basement studios K1-K5 and ’The Pit’
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Week 5 Tasks

B Submit questions for Week 5
B https://forms.office.com/r/h 7 KwswGROc

B Give us your feedback about Module 1

B 11 responses so far

B Nhttps://forms.office.com/r/wp9Lnt32FL
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Credits

B CIS 419/519 Applied Machine Learning. Eric Eaton, Dinesh Jayaraman. https://www.seas.upenn.edu/
~CIs519/spring2020/

B EECS498: Conversational Al. Kevin Leach. https://dijkstra.eecs.umich.edu/eecs498/

B CS 4650/7650: Natural Language Processing. Diyi Yang. https://www.cc.gatech.edu/classes/AY2020/
cs/650_spring/

B Natural Language Processing. Alan W Black and David Mortensen. http://demo.clab.cs.cmu.edu/NLP/
B [N4325 Information Retrieval. Jie Yang.

B Speech and Language Processing, An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition. Third Edition. Daniel Jurafsky, James H. Martin.

B Natural Language Processing, Jacob Eisenstein, 2018.
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