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Machine Learning
Machine learning: observe a pattern of features and 
attempt to imitate it in some way 

A feature is an individual measurable property or 
characteristic of a phenomenon 

Choosing informative, discriminating and independent 
features are essential for well-working ML
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sepal_lenght sepal_width petal_lenght petal_width Class

5.0 3.3 1.4 0.2 Iris-setosa

7.0 3.2 4.7 1.4 Iris-versicolor

5.7 2.8 4.1 1.3 Iris-versicolor

6.3 3.3 6.0 2.5 Iris-virginica

LabelFeature Feature FeatureFeature
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Dataset Dimensionality

Record / Sample / Data Item

Feature Value

Label Value

d = width x height Input layer size = d

Features 
Images —> pixel values 
(e.g. B/W, RGB) 
Numbers —> OK 

What about text?
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Textual documents
A sequence of alphanumerical characters 

Short: e.g. tweets 
Long: e.g Web documents, interview transcripts  

Features are (set of) words 
Words are also syntactically and semantically organised 

Feature values are (set of) words occurrences 

Dimensionality —> at least dictionary size 

I Wear Mask … W(n) Class

1 1 1 0 Spam

0 0 1 0 Not Spam

Spam

Document
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Main types of NLP Tasks
Label a region of text 

e.g. part-of-speech tagging, sentiment classification, or named-entity recognition 

Link two or more regions of text 
e.g. coreference (are two mentions of a real-world thing (e.g. a person, place, or some other named entity( 
are in fact referencing the same real-world thing? 

Fill in missing information (missing words) based on context



Languages 
Representation
Language = vocabulary and its usage in a specific 
context captured by textual data
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Language Modeling 
A collection of statistics learned over a particular language 

Often used to 
Measure how “important” (or descriptive) a word is in a given document collection 

e.g. find the set of words that best describe multiple clusters (see Assignment 2)  
Predict how likely a sequence of words is to occur in a given context  

e.g. find the word(s) that is more likely to occur next 

A good language model will give this sentence a high probability because this is a completely valid 
sentence, syntactically and semantically 

These probabilities are almost always empirically derived from a text corpora
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The issue with representing words
Words are discrete symbols 

Machine-learning algorithms cannot process symbolic information as it is 

We need to transform the text into numbers 

But we also need a way to express relationships between words!



9

A simple approach
Assign an incremental number to each word 

cat = 1  
dog = 2  
pizza = 3 

Problem: There is no notion of similarity! 
Is a cat as semantically close (similar) to a dog as a dog is to a pizza  

Also, no arithmetic operations 
Does it make sense to calculate Dog - Cat to establish similarity?
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Word Embeddings
Embed (represent) words in a numerical n-dimensional space 

Approach 1: assign numbers to words, and put semantically 
related words close to each other 

We can now express that “dog is more related to cat than to pizza” 
But is pizza more related to dog than to cat? 

Approach 2: assign multiple numbers (a vector) to words 
e.g. a 2-dimensional space 

cat = [4,2], dog = [3,3], pizza = [1,1] 

We can calculate distance (and similarity) 
e.g. Euclidean, or Cosine (angles) 

But what is the meaning of an axis?

1-Dimension

2-Dimensions

word representation
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One-Hot Encoding
Each word in the vocabulary is represented by a one-bit position in a HUGE (sparse) vector 

Vector dimension = size of the dictionary 
There are an estimated 13 million tokens for the English language  

For example 
cat      = [0,0,0,0,0,0,0,0,0,0,1,0,0,0,…,0] 
dog     = [0,0,0,0,0,0,0,1,0,0,0,0,0,0,…,0] 
pizza   = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,…,0] 

Problems:  
The size of the vector can be huge 

Remember Zip’s law? Easy to reach 106 words 
But we can use stemming, lemmatisation, etc 

Still, no notion of similarity 
Each word is an independent, discrete entity

Words ordered by their frequency



12

Independent and identically distributed words assumption

The simplest (inaccurate) language model assumes that each word in a text appears independently on the 
others  

The text is modelled as generated by a sequence of independent events 

The probability of a word can be estimated as the number of times a word appears in a text corpus 

But high probability does not mean important (or descriptive)
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Measuring the importance of words
Term frequency TF 

Measuring the importance of a word t to a document d 
The more frequent, the more important to describe the document 

Inverse document frequency IDF 
Measuring the importance of a word t to a document collection 
Rare terms are more important than common terms  
If all (training) documents contain the word design, but only a few selected documents contain the word “machine”, 
then machine is more discriminative in the document collection 

TF-IDF 
“Scaling” of a word’s importance (in a document) based on both its frequency and collections’ importance 
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N-gram Language models
A more accurate model takes into account the conditional probabilities among adjacent words (e.g. bi-grams)  

We try to calculate the probability of a word w given a word w-1 
e.g.  computer network vs. computer pear 

The model is more accurate but it is more difficult to be estimated with accuracy 

The N-grams model dependencies deriving from 
Grammatical rules 

e.g. an adjective is likely to be followed by a noun 
Semantic restrictions  

e.g. Eat a pear vs. Eat a crowbar  
Cultural restrictions 

e.g. Eat a cat  

The probabilities depend on the considered contexts
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Limits of N-grams based LMs
The model accuracy increases with N  

The syntactic/semantic contexts are better modelled 

The drawback is the difficulty in the model parameter estimation (the conditional probabilities) 
If the dictionary contains D terms (word forms with inflexions) there are DN N-grams  

A corpus C words “long” contains C N-grams (each word generates exactly a sample for one N-gram) 
For a significant estimate of the parameters, the corpus size should increase exponentially in the order N of N-grams  
f.i. given D=30000 there are 900 million bigrams and a corpus with C=1.000.000 words would not be adequate to 
compute an accurate estimate for the language (especially for the rarest bigrams) 
Hence, the resulting model can be heavily dependent on the corpus exploited in the estimation of the parameters 

They do not generalise to unseen words sequences 

What about using machine learning?



When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size 
window) 

Distributional semantics: A word’s meaning is given by the words that frequently appear close-by 

For example: look at the following contexts:  
(1) A bottle of ___ is on the table 
(2)  Everybody likes ___   
(3) Don’t have ___ before you drive  
(4) We make ___ out of corn  

What other words fit into these contexts?

1 2 3 4
tezgüino  1 1 1 1

loud 0 0 0 0
motor oil 1 0 0 1
tortillas 0 1 0 1
choices 0 1 0 0

wine 1 1 1 0

16

Representing words by their contexts

tezgüino
word 

representation

Contextual 
similarity
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Representing words by their contexts
When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size 
window) 

Distributional semantics: A word’s meaning is given by the words that frequently appear close-by 

For example: look at the following contexts:  
(1) A bottle of ___ is on the table 
(2)  Everybody likes ___   
(3) Don’t have ___ before you drive  
(4) We make ___ out of corn  

What other words fit into these contexts?

“You shall know a word by the company it 
keeps” 

The distributional hypothesis, John Firth 
(1957) 

The contexts in which a word appears tell us a 
lot about what it means.  

Words that appear in similar contexts have 
similar meanings
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Distributional Word Embeddings 
Define dimensions that allow expressing a context 

The vector for any particular word captures how strongly it is associated with each 
context 

For instance, on a 3-dimensional space, the axis could have the semantic meaning 
x-axis represents some concept of "animal-ness"  
z-axis corresponds to "food-ness"  

Of course, defining these axes is very difficult 
How many?  

Hopefully, a lot less than the size of the dictionary (dense vectors) 
But at least ~100-dimensional, to be effective 

Also, how do we assign the values associated with the vectors? 
Tens of millions of numbers to tweak 

How about using machine learning models? —> later

3-Dimensions

animal-ness

food-ness

cat      = [0.7,0.5,0.1] 
dog     = [0.8,0.3,0.1] 
pizza   = [0.1,0.2,0.8]



Word 
Embeddings with 
Machine Learning
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How to calculate Word Embeddings?
By calculating co-occurrence counts on the whole dataset 

Full document: Latent Semantic Analysis 
Window: SVD Based Methods 

Iteration Based Methods: learn one iteration (e.g. sentence) at a time 
Word2Vec
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Word-Document Matrix
Words that are related will often appear in the same documents  

E.g. banks, bonds, stocks, money, etc. are probably likely to appear together 

But banks, octopus, banana, and hockey are probably less likely 

Example corpus: 
D1: I like deep learning. 

D2: I like NLP. 

D3: I enjoy flying. 

The result is a very large matrix 
Size is a function of the number of words and number of documents 

Then reduce dimensionality using Singular Value Decomposition (SVD)

D1 D2 D3
I 1 1 1

Like 1 0 0
enjoy 0 1 0
deep 1 0 0

learning 1 0 0
NLP 0 1 0
flying 0 0 1

. 1 1 1
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Window based co-occurrence matrix
Window length 1 (more common: 5–10) 
Symmetric (irrelevant whether left or right context) 

Example corpus: 
D1: I like deep learning. 
D2: I like NLP. 
D3: I enjoy flying. 

I like enjoy deep learning NLP flying .

I 0 2 1 0 0 0 0 0
Like 2 0 0 1 0 1 0 0
enjoy 1 0 0 0 0 0 1 0
deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1
NLP 0 1 0 0 0 0 0 1
flying 0 0 1 0 0 0 0 1

. 0 0 0 0 1 1 1 0
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Co-Occurrence Vectors
Simple count co-occurrence vectors 

Vectors increase in size with vocabulary 
Very high dimensional: require a lot of storage (though sparse) 
Subsequent classification models have sparsity issues -> Models are less robust 

Low-dimensional vectors 
Idea: store “most” of the important information in a fixed, small number of 
dimensions: a dense vector 
Usually 25–1000 dimensions  

Dimensionality reduced through Singular Value Decomposition (SVD)
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Problems with co-occurrence approaches
The calculated word vectors are more than sufficient to encode semantic and syntactic (part of speech) 
information  
But there are many other problems:  

The dimensions of the matrix change very often (new words are added very frequently and corpus changes in size) 
The matrix is extremely sparse since most words do not co-occur.  
The matrix is very high dimensional in general 
Very expensive to train (i.e. to perform SVD)  

Some clever intervention is needed to adjust the co-occurrence matrix to account for the imbalance in word 
frequency 

Ignore stopwords 
Apply a ramp window – i.e. weight the co-occurrence count based on the distance between the words in the document.  
Use Pearson correlation and set negative counts to 0 instead of using just raw count 

Iteration-based methods solve many of these issues
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Iteration Based Methods - Word2Vec
Idea: Design a model whose parameters are the word vectors 

Train a simple neural network with a single hidden layer,  using a certain objective 
At every iteration, evaluate the errors, penalize the model parameters that caused the error 

How? 
Consider a large corpus of text 
Define a vocabulary of words and associate each word to a row of the embedding matrix initialised at random 
Go through each position in the text, which has a centre word and a context around it (fixed window) 
Adjust the word vectors to minimise a prediction error 

Predicting what? 
Estimate the probability of context given the centre word (SKIPGRAM) 
Estimate the probability of the centre word given its context (CBOW)
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SKIPGRAM
Predicts the probability of context words from a centre word 

Input: one-hot vector of the centre word (size of the vocabulary) 
Output: a single vector; for every word the probability that a word is selected to be in the context window 

When training this network on word pairs, the input is a one-hot vector representing the input word and the training 
output is also a one-hot vector representing the output word 

Each word is generated multiple times 
each time it is conditioned only on a single word

tezgüino

???? ?? ??
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SKIPGRAM Example

One-hot input vector

Size of vocabulary

This is the word vector that 
we want to learn

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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CBOW - Continous Bag of Word
Predict a centre word from the surrounding context in terms of word vectors 

Bag-of-words model: because the order of the context words does not matter 
Continuous: condition on a continuous vector constructed from the word embeddings  

Input: multiple one-hot vectors (one per context word) 
Output: a single vector, for every word the probability that a word is selected to be the right one 
for the context 
The dimension of the hidden layer is the same as for SKIPGRAM 

Skip-gram: works well with a small amount of the training data, represents well even rare words 
or phrases. 
CBOW: several times faster to train than the skip-gram, slightly better accuracy for the frequent 
words.

a bottle of is on the

??
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Issues
Results are in general impressive, but 

Multi-sense words (e.g. bank) 
Possible solution: multi-sense word embeddings 

Fixed-size vocabulary: new words are not learned 
Out of Vocabulary words are represented with the same dense vector 

No information about sub-word structure: morphology is completely ignored  
Possible solution: character-based word representation  

e.g. Facebook’s FastText (https://fasttext.cc)

https://fasttext.cc


Using Word 
Embeddings
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Why are embeddings important
They are essential for using neural networks to solve NLP tasks 
They bridge the symbolic (discrete) world of words with the numerical (continuous) world of neural 
networks
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Word embeddings can be trained, but sometimes you just 
want to reuse them 

Three scenarios 
Scenario 1: Train word embeddings and your model at the same 
time using the train set for your task  

Scenario 2: initialize your model using the pre-trained word 
embeddings, and train them (fine-tune) and your model at the 
same time using the train set for your task 

A large amount of plain text data (e.g. Wikipedia dumps), which are 
usually more readily available than the train datasets for your task  
This is an example of transfer learning 

Scenario 3: Same as Scenario 2, except you fix word 
embeddings while you train your model

How can embeddings be used with NLP Models?
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Use Word2vec in your work
Easiest way to use it is via the Gensim library for Python (tends to be slowish, even 
though it tries to use C optimizations like Cython, NumPy) 

https://radimrehurek.com/gensim/models/word2vec.html 

Original word2vec C code by Google  
https://code.google.com/archive/p/word2vec/ 

Use pre-trained word vectors whenever possible 
Glove: https://nlp.stanford.edu/projects/glove/ 
fastText: https://fasttext.cc/docs/en/english-vectors.html



Evaluating 
Word 
Embeddings
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Related to a general evaluation in NLP: Intrinsic vs. extrinsic  

Intrinsic: evaluation on a specific/intermediate subtask [analogy] 
Fast to compute 
Helps to understand that system 
Not clear if really helpful unless correlation to the real task is established 

Extrinsic: evaluation on a real task 
Can take a long time to compute the accuracy 
Unclear if the subsystem is the problem or it is an interaction with other subsystems

How to evaluate word vectors? 
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Intrinsic word evaluation
Word vector analogies 

Evaluation: find a word such that the vector is closest to vec[man]-
vec[woman]+vec[king] according to the cosine similarity	 

Correct if the word found is queen 

Can be applied to test for syntactic analogy as well 
Quick:quickly = slow:slowly

a:b = c:?
man:woman = king: ?
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Gender relation
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Company - CEO
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Comparatives and Superlatives
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Countries and their capital
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But are word embeddings so good?
By exploring the semantic space, you can also find analogies like  

Thirsty is to drink as tired is to drunk 
Fish is to water as bird is to hydrant
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But are word embeddings so good?
By exploring the semantic space, you can also find analogies like  

Thirsty is to drink as tired is to drunk 
Fish is to water as bird is to hydrant 

Man is to woman as computer programmer is to ______ 
Woman is to man as computer programmer is to ______ 
Man is to genius as woman is to______ 
Woman is to genius as man is to ______
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But are word embeddings so good?
By exploring the semantic space, you can also find analogies like  

Thirsty is to drink as tired is to drunk 
Fish is to water as bird is to hydrant 

Man is to woman as computer programmer is to ______ 
Woman is to man as computer programmer is to ______ 
Man is to genius as woman is to______ 
Woman is to genius as man is to ______ 

Biases in word vectors might seep through to produce unexpected, hard-to-predict biases in 
widely used NLP applications

geniuses
muse

Mechanical engineer
Homemaker



Extra: 
Recurrent 
Neural Networks
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Traditional neural networks can consider only a finite window of previous words 
Also, the behaviour does not depend on the order in which inputs are presented 

Recurrent Neural Networks are capable of conditioning the model on ALL 
previous words 

inspired by ideas on how the brain interprets sequences 

The hidden state has feedback connections that pass information about the past 
to the next input 

Output can be produced at any step or only at the end of the sequence 

How to train an RNN?  
feedback connections create loops, which is a problem since the update of weight 
depends on itself at the previous time step. 
Solution: a recurrent neural network processing a sequence of length T is equivalent 
to a feedforward network obtained by the unfolding of the RNN T times 
The unfolded network is trained with standard backpropagation with weight sharing

Recurrent Neural Network
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What are RNNs for?
Recurrent Neural Networks can be used in a variety of scenarios depending on how the inputs are fed and 
the outputs are interpreted 

Sequential input to sequential output 
Machine translation / part-of-speech tagging and language modelling tasks lie within this class 

Sequential input to single output.  
e.g sentiment analysis, in which we fed a sentence and we want to classify it as positive, neutral or negative 

Single input to sequential output 
e.g. image captioning: where we fed a picture to the RNN and want to generate a description of it
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RNNs can be used for tagging
e.g., part-of-speech tagging, named entity recognition
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Sentence Classification
e.g., sentiment classification
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Pros and cons
RNN Advantages:  

Can process any length input  
Computation for step t can (in theory) use information from many steps back  
Model size doesn’t increase for longer input context  

RNN Disadvantages:  
Recurrent computation is slow  
In practice, difficult to access information from many steps back (gradient vanishing problem

http://neuralnetworksanddeeplearning.com/chap5.html#the_vanishing_gradient_problem

http://neuralnetworksanddeeplearning.com/chap5.html


Admin
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ITD Exhibition
This Friday the Masters students on the Interactive Technology Design 
course will be having a small exhibition of prototypes made with AI systems - 
you’ll see some Teachable Machine pose and object detection, some 
VoiceFlow conversational agents and if the technology works, some 
EdgeImpulse physical gesture recognition.  
These are all very early sketches, so expect to see lots of cardboard and 
string, but also interesting ideas about how AI models might be applied in 
context.  

Come and find us at 16:00 in the basement studios K1-K5 and ’The Pit’
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Week 5 Tasks
Submit questions for Week 5 

https://forms.office.com/r/h7KwSwGR0c 

Feel free to submit new questions for the previous weeks! 

Give us your feedback about Module 1 
11 responses so far 
https://forms.office.com/r/wp9Lnt32FL

https://forms.office.com/r/wp9Lnt32FL
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