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Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology
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How do machines learn?




Machine Learning Training and Evaluation Process
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How to Evaluate?

B \letric

B How to measure errors?
B Both training and testing

Hyper-
parameter gew
tuning :

Model training

B [raining of Machine Learning
a‘gOrithm Training Data

B How to “help” the ML model to
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B Experiment /
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o Lecture 3
Training the model

B Gradient descent
Costat step 12 = 0.451

cost

(Ol derivative at b

Fit at iteration O
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Model Training: Metric

B Errors are almost inevitable!
B How to measure errors”?

B \Ve're generally interested in the following:

B How often is the prediction wrong?

B How is the prediction wrong?

B \What is the cost of wrong predictions®?

B How does the cost vary by the type of prediction that was wrong”?
B How can we minimize costs”? (or regret?)

B Select an evaluation procedure (a “metric’”)
B Ok, but which one?




Regression

B Mean (absolute | square) error

B Absolute: average of the difference between the original values and
the predicted value

B No direction

l .
MAE = N 2 | predlctzonj — valuejl
J=1

B Square: average of the square of the difference between the original
values and the predicted value

B Square is nicer to deal with during the training process (derivative)
B | arger errors are more pronounced

I . )
MSE = N 2 (predlctlonj — valuej)
J=1

Large absolute error

Error = + + +

Large square error

= iy

Small absolute error

Error= 4+ +

Small square error

Error = + +

+H




Classification

B Accuracy

B [he percentage of times that a model is correct

B However, the model with the highest accuracy is not necessarily

the best model #CorrectPredictions
Accuracy =

B Some errors (e.qg. False Negative) may be much more expensive #Predictions
than others

B Usually due to imbalanced trained datasets

B Confusions Matrix

. Type | Error Type Il Error
B Describes the complete performance of the model v 0l

Hpn

True Positive Actual Class

o |
g You're nct)|t 1 >
(_J —- pregnant!
..?3 Yes 50 10 < Ifralse I:Césitive - false alarm! - |
2 (Type | Error) A #1ruePositives + #lrueNegatives
3 True Negati ccuracy = Y
i No 40 100 < e Tegative #AllPredictions
AN

™ False Negative - underestimation
(Tvype Il Error)



All errors are not equal

B Depending on your task, different errors have

different costs

Pregnancy detection
B Cost of “false negatives”?
B Cost of “false positives™?

Covid testing
B Cost of “false negatives”?
B Cost of “false positives™?

In law enforcement?

n detecting the “Alexa” command?
n detecting a person on the road”

FALSE POSITIVES: SELF-DRIVING
GARS AND THE AGONY OF
RNOWING WHAT MATTERS

According to a preliminary report released by the National
Transportation Safety Board last week, Uber’s system
detected pedestrian Elaine Herzberg six seconds before
striking and killing her. It identified her as an unknown
object, then a vehicle, then finally a bicycle. (She was
pushing a bike, so close enough.) About a second before the
crash, the system determined it needed to slam on the
brakes. But Uber hadn’t set up its system to act on that
decision, the NTSB explained in the report. The engineers
prevented their car from making that call on its own “to
reduce the potential for erratic vehicle behavior.” (The
company relied on the car’s human operator to avoid
crashes, which is a whole separate problem.)

Uber’s engineers decided not to let
the car auto-brake because they were
worried the system would overreact

M{N MORE to things that were unimportant or

not there at all. They were, in other
words, very worried about false
positives.

https://www.wired.com/story/self-driving-cars-
uber-crash-false-positive-negative/
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Classification

B Precision

B Among the examples we classified as positive, how many did
we correctly classify?

B Recall

B Among the positive examples, how many did we correctly
classify”?

m F1-Score

B [he harmonic mean between precision (how many
instances correctly classified), and recall (how many
relevant instances are correctly classified)

B \WVhat is the implicit assumption about the costs of
errors’?

TruePositive

Precision = — —
TruePositive + FalsePositive
TruePositive
Recall = — .
TruePositive + FalseNegative
F =2% :
1= 1 R 1
Precision Recall
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Classification

B Sensitivity (True positive rate)

B the capacity of the model to identify the positively labelled

poINts
B Same as recall

Sensitivity =

TruePositive

FalseNegative + TruePositive

B Specificity (False positive rate)

B the capacity of the model to identify the negatively

labeled points

B Not the same as precision

Specificity =

TrueNegative

FalsePositive + TrueNegative

—> Recall (sensitivity) =

» Specificity =

Positive True False
label positives negatives
Negative False True
label positives negatives
. TP
Precision =
TP + FP

P

TP + FN
N

FP +TN

13



The receiver operating characteristic (ROC) curve

B A useful technigue to evaluate a model based on its
performance on false positives and negatives at the

same time
B pased on sensitivity and specificity

B [f also gives us a way to “explore™ model
performance visually

B [rade-off specificity and sensitivity by moving the

threshold

Perfect
classifier

Receiver operating characteristic example
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Some Examples

B Medical model:

B Recall and sensitivity: among the sick people (positives), how many were correctly diagnosed as sick”?
B Precision: among the people diagnosed as sick, how many were actually sick?
B Specificity: among the healthy people (negatives), how many were correctly diagnosed as healthy?

B Emaill model:

B Recall and sensitivity: among the spam emails (positives), how many were correctly deleted?
B Precision: among the deleted emails, how many were actually spam??

B Specificity: among the ham emails (negatives), how many were correctly sent to the inbox?
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Choosing Metrics

B [f a high precision is a hard constraint, do the best recall
B search engine results, grammar correction: Intolerant to FP

B Metric: Recall at Precision = XX %

B [f a high recall is a hard constraint, do best precision
B medical diagnosis: Intolerant to FN

B Metric: Precision at Recall = 100 %

B Capacity constrained (by K)

B Metric: Precision in top-K
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Model Training: dataset splitting

B Split your data
B [raining set —> to train the model
B (Optional) Validation set —> to decide which model to use

B [est set —> to evaluate the model

0]
zo%i
20% 20%\

NEVER use the test set for training —> That is CHEATING!
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Model Training: Cross-validation

B A way to use all the data for training and testing, by recycling it several times
B Splitt the data in n portions
B [rain the model n times using n-7 portions for training

B Useful when dataset is small

/ \
; ‘m—-b
Data /

Training

Score; + Score, + Score; + Scorey

Score =

4

(80%) N

X Training Training

Example: four-fold cross-validation
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No free-lunch

B [here is no one best machine learning algorithm for all
problems and datasets

B Generalisation

B How well does a learned model generalize from the data it

was trained on to a new evaluation set”?
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Generalisation

B Challenge: achieving good generalization and a small error Regression
rate AValues . AValues =
® Components of expected loss v e o
® Noise in our observations: unavoidable |- ST
_—— —
g C Time
B Bias: how much the average model overall training sets
differs from the true model Underfitted Good Fit/Robust Overfitted
B Frror due to inaccurate assumptions/simplifications made by ¢ -
the model e o o ‘e © N
i} . . o @ o X @ X X O ) O
B Variance: how much models estimated from different training e, ® <% .
sets differ from each other . X ® XX
X X X
B[00 much sensitivity to the samples N
Classification
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High Variance

Low Variance

selg Mo selg YybiH
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Overfitting vs. Underfitting

B Protect against overfitting

B |earning a model that too closely matches the idiosyncrasies
of the training data

B model is too “complex” and fits irrelevant characteristics
(noise) in the data

- OW

- OW

B Protect against underfitting

B |earning a model that does not adequately capture the
patterns in the training data

B [he modelis too “simple” to represent all the relevant class
characteristics

B High bias and low variance

B High training error and high test error

Regression

AValues AValues
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Overfitting vs. Underfitting

B Protect against overfitting

B |earning a model that too closely matches the idiosyncrasies
of the training data

B model is too “complex” and fits irrelevant characteristics
(noise) in the data

B | ow bias and high variance

B [ ow training error and high test error

B Protect against underfitting

B |earning a model that does not adequately capture the
patterns in the training data

B [he modelis too “simple” to represent all the relevant class
characteristics

B High bias and low variance

B High training error and high test error

Underfitting

Overfitting
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Total Error

Variance

Optimum Model Complexity

Error

Bias?

m
A
\_/

Model Complexity

https://en.wikipedia.org/wiki/Bias—variance_tradeoff#/media/File:Bias_and_variance_contributing_to_total_error.svg
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Error (mean absolute error)

Complexity of the model
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Tuning Hyperparameters

B |nputs to the learning algorithms that control their behaviour
B Examples:
B maximum tree depth in decision trees
B number of neighbours k In k-nearest neighbour
B Neural networks: architecture, learning rate

tree depth

B [or a model to work well, they often need to be tuned carefully
B Huge search space! may be inefficient to search exhaustively Grid Layout Random Layout

B Possible approaches

B Grid search: brute-force exhaustive search among a finite set of
hyperparameter settings

B Al combinations are tried, then the best setting selected

B Random search: for each hyperparameter, define a distribution (e.qg. Important parameter Important parameter
normal , UN n‘orm) https://www.jmlr.org/papers/volume13/bergstral2a/bergstral2a

B |n the search loop, we sample randomly from these distributions

Unimportant parameter

Unimportant parameter

DON’T optimise these numbers by looking at the test set! That is CHEATING!




Double Cross-Validation

B o optimise over the hyperparameter do cross-validation inside another cross-validation

B The minimum error is often not the most interesting. Try to understand the advantages/disadvantages
B \WVhat errors are made” (inspect objects, inspect labels)
B \\Vhat classes are problematic? (confusion matrix)

B Does adding training data help? (learning curve)

B How robust is the model?

__Training  _ internal
d crossvalidation ~ Choose
| | with Iovxest
I 1 .
: I _\v | 7 2 Cid
| /I' Classifier | j=1
Rotate | | UL \v
ota -
n times | | g =i : - A
\ Validating J Classifieri — €;
__________ 7/

Testing
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Model Evaluation: Experiments

B Compare to one or more baselines
B EXxisting solution

B Trivial (hew) solution

B Rule-based solution
B Multiple ML models

More next
week

28



Machine
Learning For
Design

Lecture 8 - Designing And Develop Machine
Learning Models / Part 2

Alessandro Bozzon
23/03/2022

mifd-io@tudelft.nl
www.ml4design.com



mailto:mlfd-io@tudelft.nl
http://www.ml4design.com

Credits

B Grokking Machine Learning. Luis G. Serrano. Manning, 2021
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