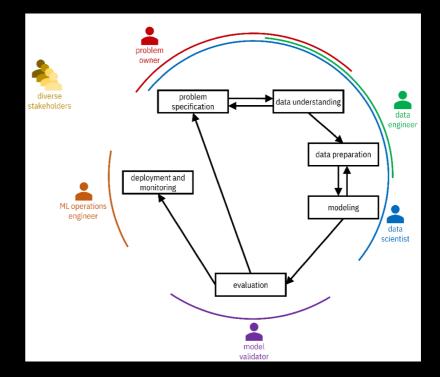
Machine <u>earning for</u> Des Lecture 2 Introduction to Machine Learning. Part 2

The Machine Learning Life-Cycle

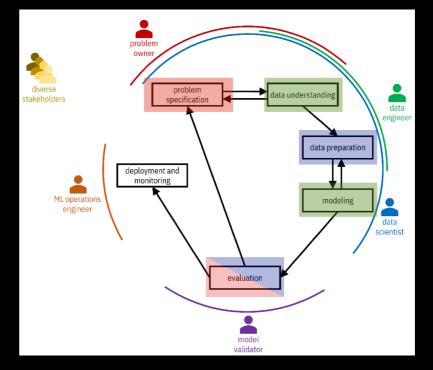
Cross-Industry **Standard Process for Data Mining** (CRISP-DM) methodology



CRISP-DM In our course

Today and in all modules

In Module 3



Problem Specification

What is the problem owner hoping to accomplish and why?

Why am I (being asked to) solve it?

Am I the right person to solve this problem? What are the (psychological, societal, and environmental) repercussions of building this technology? Should this thing be built at all?

What are the metrics of success?

Data Understanding

Know your data!

Data need to be collected \rightarrow Datasets

What data is available?

What data should be available, but isn't?

What population / system / process is your data representing?

And what properties of such population / system / process are included (or excluded)?

What biases (social, population, temporal) are present in your datasets?

Data Preparation

- Data cleaning

- Filling missing values
- Transforming value types (e.g. binning)
- Dropping features that should not be considered

- Data integration

- Extracting, transforming, and loading (ETL) data from disparate relevant databases and other data sources
- This step is most challenging when dealing with big data sources

Feature engineering

 Transform the data to derive new features

Modeling

- Select a training algorithm
- Use it to **find patterns** in the training dataset
- Generalize them to fit a statistical model
- Enhance the model to satisfy additional objectives and constraints captured in the problem specification
 - e.g., increase reliability, mitigate biases, generate explanations

No free-lunch theorem

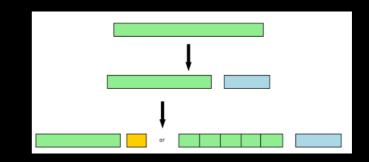
 There is no one best machine learning algorithm for all problems and datasets



Evaluation

- Testing and validation of the model
 - Also against the problem specification requirements

- Performed on data
 not used for
 training
 - Hold out dataset



Model auditing/risk management

POLICY AND LEGISLATION | Publication 21 April 2021

Proposal for a Regulation laying down harmonised rules on artificial intelligence

The Commission has proposed the first ever legal framework on AI, which addresses the risks of AI and positions Europe to play a leading role globally.

The Proposal for a Regulation on artificial intelligence was announced by the Commission in April 2021. It aims to address risks of specific uses of AI, categorising them into 4 different levels: unacceptable risk, high risk, Imide risk, and minimal risk.

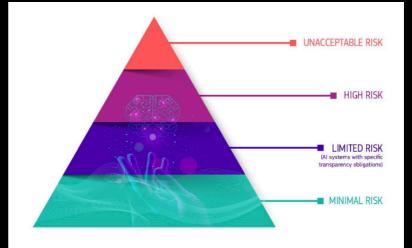
In doing so, the AI Regulation will make sure that Europeans can trust the AI they are using. The Regulation is also key to building an ecosytem of excellence in AI and strengthening the EU's ability to compete globally. It goes hand in hand with the <u>Coordinated Plan on AI</u>.

View the proposal for a Regulation in all EU languages on EUR-Lex

Related topics

Communication on Fostering a European approach to Artificial Intelligence

See also



The Pyramid of Criticality for AI Systems

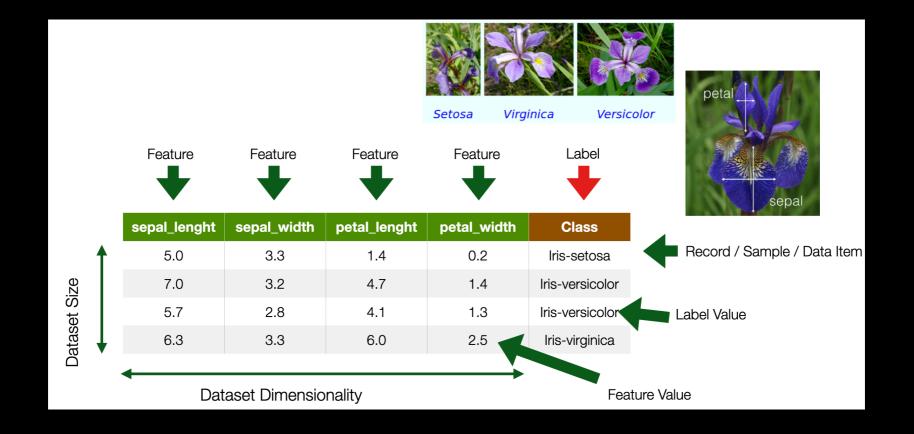
Deployment and monitoring

- What data
 infrastructure will
 bring new data to
 the model?
- Will predictions be made in batch or one-by-one?
- How much latency is allowed?
- How will the user interact with the system?
 - Is there a problem here?

- Tools to monitor the model's performance
 - And ensure it is operating as expected

Data The raw material

Data



Types of Features / Label Values

- Categorical
 - Named Data
 - Can take numerical values, but no mathematical meaning
- Numerical
 - - Measurements
 - Take numerical values (discrete or continuous)

Categorical Nominal Categorical Ordinal

- No order
- No direction
- e.g. marital status, e.g., letter grades

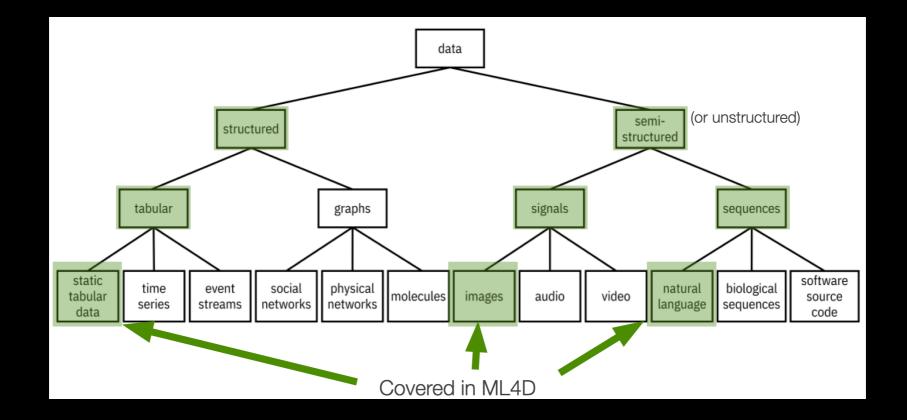
- Order
- Direction
- gender, ethnicity (*A*,*B*,*C*,*D*), ratings (dislike, neutral, like)

Numerical Interval Numerical Ratio

- measurements
- No true zero or fixed beginning
- e.g., temperature (C or F), IQ, time, dates

- Difference between Difference between measurements
 - True zero exists
 - e.g., temperature (K), age, height

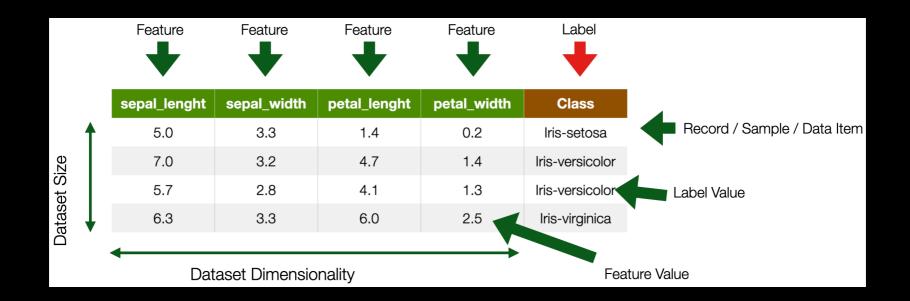
Data Modalities



Key Dimensions

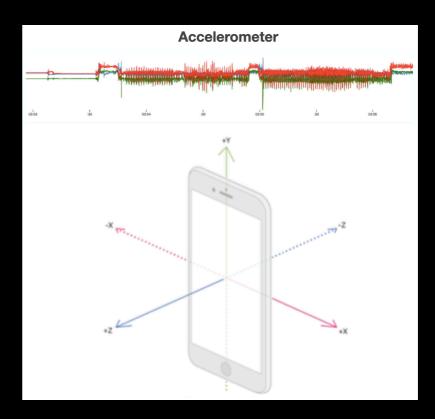
Modality	Quantity	Quality	Freshness	Cost
Structured	Number of records	Errors	Rate of collection	Acquisition
Semi- structured	Number of features	Missing data		Licensing
		Bias		Cleaning and integrations

Static Tabular Data



Time Series

- tabular data with time feature
- For instance
 - Sensor data, Stock market data
- Label is usually associated with a set of records
 - e.g. a continuous
 movement of the phone
 indicating an action



Time					
Feature	Timestamp	X	У	Z	Class
	15060015925	2.04	3.72	8.12	
	15060015943	1.96	4.73.68	7.56	Device Rotation
	15060015980	1.63	3.56	6.53	i lotation
	1506001610	1.06	3.76	5.81	

Images

- Visual content acquired through cameras, scanners, etc.
- Each pixel in an image is a feature
 - But spatially and geometrically organised
 - e.g., edges, corners
- Feature values are numerical values across channels
 - e.g., *R,G,B*
- Dimensionality $\rightarrow n \times m$

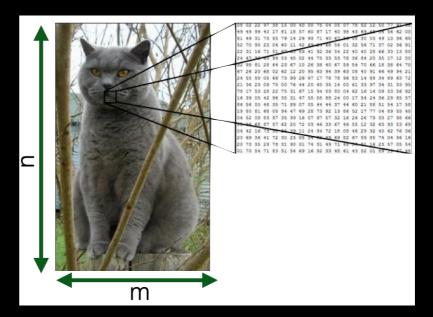


Image	P(1,1)	P(2,1)	P(3,1)	 P(n,m)	Class
	255, 0, 0	255, 1, 1	255, 0, 0	R,G,B	Cat
	255, 213, 0	255, 213, 1	255, 213, 4	R,G,B	Dog
					Cat
					Duck

More in Module 1

Textual documents

- Sequence of alphanumerical characters
 - Short: e.g. tweets
 - Long: e.g Web documents, interview transcripts
- Features are (set of) words
 - Words are also syntactically and semantically organised
- Feature values are (set of) words occurences
- Dimensionality \rightarrow at least dictionary size

i wear this mask to sing lullabies to my children ..., 24 May 2015

By Sir Chubs

Verified Purchase (What is this?)

This review is from: Overhead Rubber Penguin Mask Happy Feet Animal Fancy Dress (Toy)

I wear this mask to sing lullabies to my children. They are terrified of the mask. Whenever they protest about their bed time, or ask for too many sweets, I whip on the mask, and they soon know who is the King Penguin.

Document	•	Wear	Mask	 W(n)	Class
	1	1	1	0	Spam
	0	0	1	0	Not Spam
					Spam

More in Module 2

Data Sources

Administrative Data	Social Data	Crowdsourcing
Call records	Web pages	Distributed sensing
Financial transactions	Social Media	Implicit crowd work (e.g. captcha)
Travel Data	Apps	Micro-work platforms (e.g Amazon Mechanical Turk)
GPS Data	Search Engines	
	Data Call records Financial transactions Travel Data	DataSocial DataCall recordsWeb pagesFinancial transactionsSocial MediaTravel DataAppsGPS DataSearch

Data Sources

Purposefully Collected Data	Administrative Data	Social Data	Crowdsourcing
<i>Modality</i> : mostly structured	<i>Modality</i> : mostly structured	<i>Modality</i> : mostly semi-structured	<i>Modality</i> : all
<i>Quantity</i> : low	<i>Quantity</i> : high	<i>Quantity</i> : low	<i>Quantity</i> : mid- low
<i>Quality</i> : high	<i>Quality</i> : high	<i>Quality</i> : low	<i>Quality</i> : mid
Freshness: low	<i>Freshness</i> : high	<i>Freshness</i> : high	<i>Freshness</i> : mid
<i>Cost</i> : high	<i>Cost</i> : high	<i>Cost</i> : low	<i>Cost</i> : mid-low

Categories of Machine Learning

How do machines learn?

On Models

A physical, mathematical, logical, or conceptual representation of a system, entity, phenomenon, or process

- A simple(r)

representation of reality helping us understand how something works or will work.

- Not truthful, just a useful one
- The goal of models is to make a particular part or feature of the world more accessible to understand, define, quantify, visualise, or simulate

Examples of models

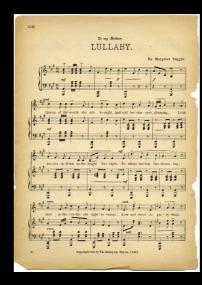
Architecture plans

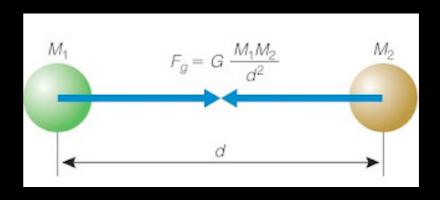
Maps

Music Sheet

Mathematical laws of physics!

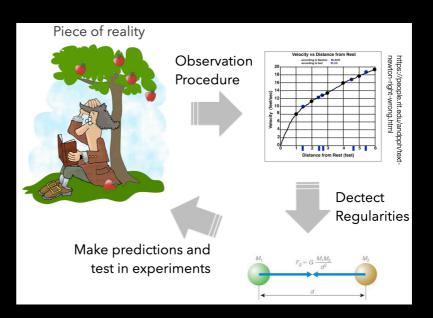
Machine Learning (statistical) Models





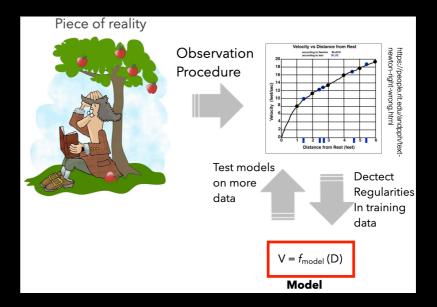
Scientific Models

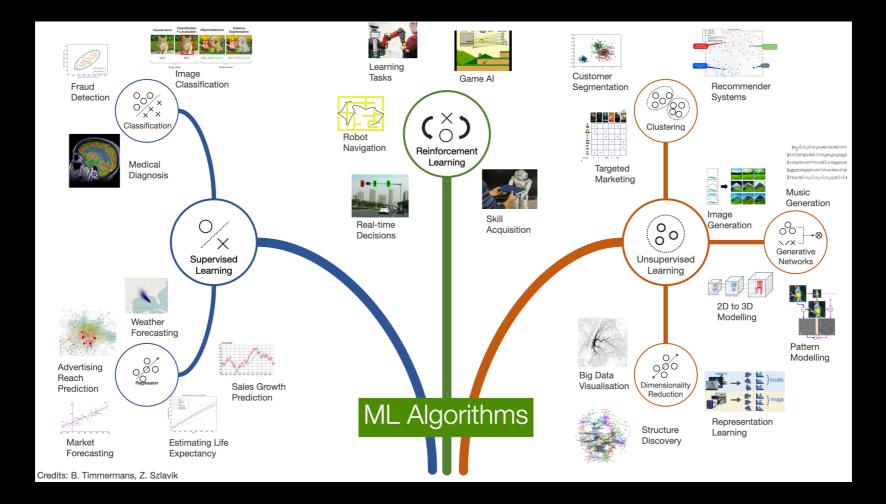
- GOAL: explain reality
- Created to make predictions about the outcomes of future experiments
 - e.g., apples on the moon
- Tested against the outcome
- If data from new experiments don't agree, the model has to be modified/extended / refined
 - Falsifiability
- Scientific models should be *small* and *simple*.
- They should generalize phenomena observed in new ways.



ML Models

- GOAL: describe the data
- Designed to capture the *variability* in observational data by exploiting regularities/symmetries/redundancies
- A good ML model doesn't need to explain reality, it just describe data
- They don't need to be simple or transparent, or intelligible. Just accurate
 - Black box
- ML models may be large and complex.
- They should generalize to new data obtained in the same way as the training data
 - Same application context and data acquisition process

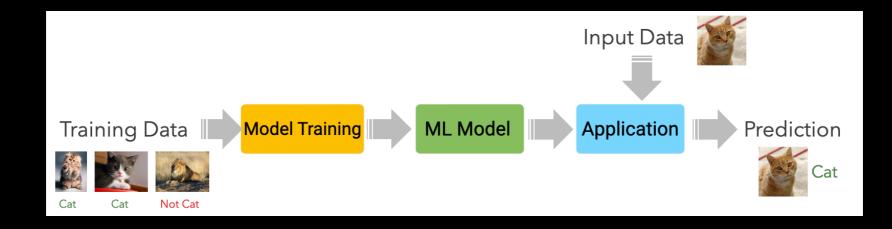




Supervised Learning

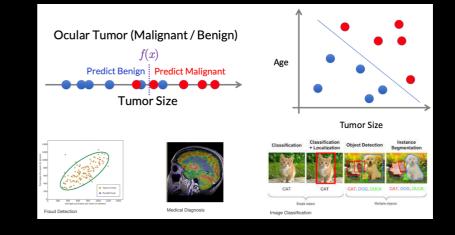
- Input: labeled data
 - Data + expected prediction
- During training, labels are used to associate patterns with outputs
- Learns how to make input-output predictions

- Classification
- Regression
- Ranking
- Recommendation



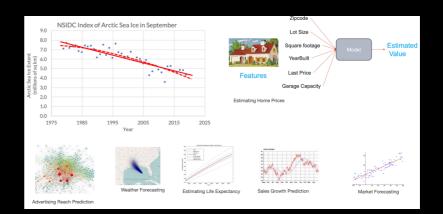
Classification

- Learn to output a category label
- Binary
 - e.g. Spam / not
 Spam, Cat / not
 cat
- Multi-class
 - e.g. cat, dog, bird



Regression

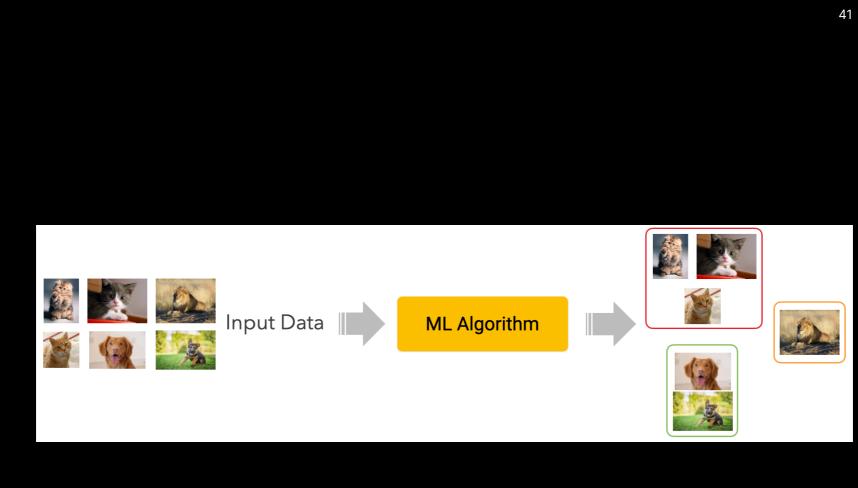
- Learn to output one or more **numbers**
 - e.g., value of a share, number of stars in a review



Unsupervised – Clustering Learning

- Input: unlabeled data
- The machine learns *Anomaly detection*& structures (patterns) from the data without human guidance

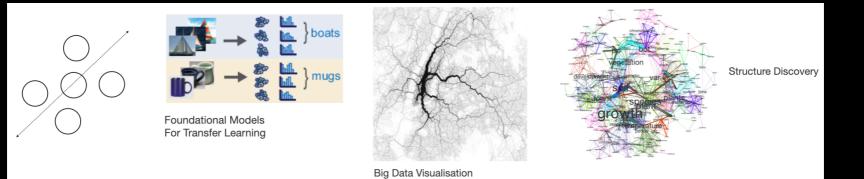
- Dimensionality Reduction (e.g. Large Language Models)



Clustering

š 🖉 🤁 🎽 () () 4.5 4.0 3.5 3.0 2.5 2.0 2 4 5 5 4 1 Recommender 1.5 5 2 1.0 Systems 0.5 1 5 4 0.0 2 4 4 5 4 **Customer Segmentation** Targeted Marketing sim(i,j) -1 -1 0.86 1 NA

Dimensionality Reduction

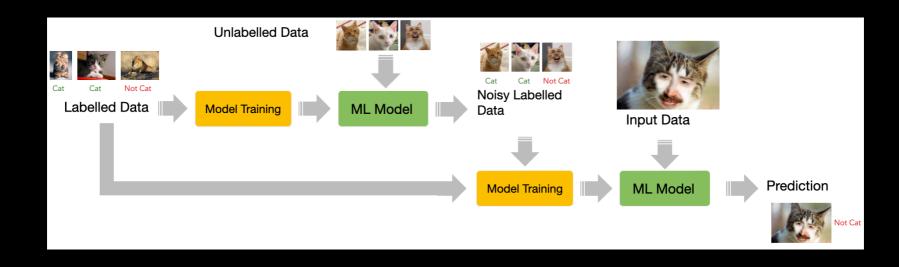


Semi-Supervised Learning

Combination of **supervised** and **unsupervised** learning

Few **labeled** data in the input are used to create **noisy labeled** data

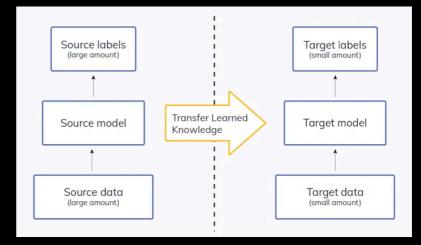
With more labeled data, the machine learns how to make input-output **predictions**



Transfer Learning

Often called *fine-tuning* Reuse a model trained for one task is **repurposed** (tuned) on a different but related task

Useful in tasks lacking abundant data



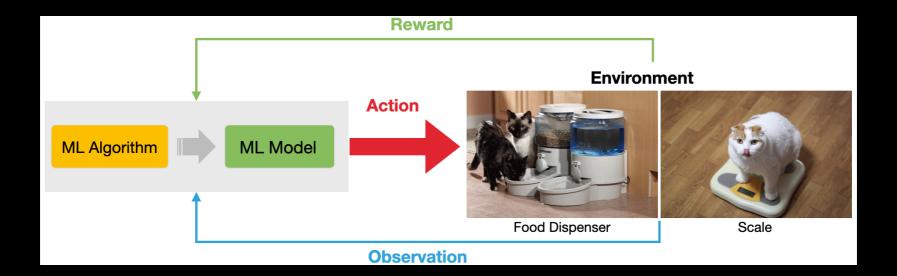
Input Data Cat Classifier Labelled Data Cat Classifier ML Algorithm ML Model ML Model ML Model ML Model ML Algorithm ML

Reinforcement Learning

Data about the **environment** and **reward function** as input

The machine can perform **actions** influencing the environment

The machine learns behaviours that result in greater reward



Don't forget domain expertise

- ML makes some tasks automatic, but we still need our brains
- More in Module 3 and Module 4

- Defining the prediction task
- Define the evaluation metrics
- Designing features
- Designing inclusions and exclusion criteria for the data
- Annotating (handlabeling) training (and testing) data
- Select right model
- Error analysis

Machine earning for Jes Lecture 2 Introduction to Machine Learning. Part 2