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How do humans

see?




Hubel and
Wiesel, 1959
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Neural Correlation

of Objects & Scene Recognition

Kanwisher et al. J. Neuro. 1997 Epstein & Kanwisher, Nature, 1998




Why is machine

vision hard?




The deformable and
truncated cat
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Figure 1. The deformable and truncated cat. Cats exhibit (al-

most) unconstrained variations in shape and layout.
Parkhi et al. The truth about cats and dogs. 2011







target network — forward pass
=== backward pass

- == error vs. desired output

“school bus”

(b) 2D image

(@) 3D scene camera




Computer Vision

Challenges




Viewpoint Variation
A single instance of an object can be oriented in
many ways to the camera.

Vlewpomt variation




Deformation

Deformation

T = N
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Many objects of interest are not rigid
bodies and can be deformed in
SQSUCINERYEVES




Occlusion

Occlusion

The objects of interest can be occluded.
Sometimes only a tiny portion of an
object (as few pixels) could be visible.




lllumination Condition

The effects of illumination can be
drastic on the pixel level.

lllumination conditions




Scale variation Scale variation

— Visual classes often
exhibit variation in
their size

— Size in the real
world

— Size in the image




Background clutter

The objects of interest may blend
iInto their environment, making them
hard to identify.




Intra-class variation
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How Computer

Vision models
work?




Course of
dimensionality

— High dimensionality

- A 1024x768 |mage haS d = pixelspacg
/86432!

— A tiny 32x32 image has d =
1024

— Decision boundaries in pixel
space are extremely complex

— We will need “big” ML models
with lots of parameters

— For example, linear
regressors need d
parameters




Downsampling




Flattening

d = width x height

>

Input layer size = d
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The “old days”: Feature
Extraction
— Feature

— A relevant piece of information about
the content of an image

-e.g., edges, corners, blobs (regions),
ridges

- A good feature

— Repeatable
— |ldentifiable
— Can be easily tracked and compared

— Consistent across different scales, Feature after looking
. . . . . at one image
lighting conditions, and viewing angles ’

— Visible in noisy images or when only
part of an object is visible

— Can distinguish objects from one
another

Feature after looking
at thousands of images




The “old days”: Feature Engineering

— Machine learning models are only as good as the features you
provide

To figure out which features you should use for a specific
problem

Rely on domain knowledge (or partner with domain experts)

Experiment to create features that make machine learning
algorithms work better

Handcrafted Feature PR
Extraction Classification Module Output

100%

SVM
Neural Network
0%

Dog Cat




eature Extraction
echniques

Scale-Invariant Feature Transform (SIFT)

Find “interest points” Compute features at Convert to fixed-dimensional

in the scene i int feature vector
b -} 5 -

Histogram




Performance

Object Detection (~2007) Face Detection (~2013)

Felzenszwalb, Ramanan, McAllester. A Discriminatively Trained, Multiscale, L SR R A = 2 S £A
Deformable Part Model. CVPR 2008 (DPM v1) https://github.com/alexdemartos/ViolaAndJones




Convolutional Neural CNNs exploit image properties to
Networks reduce the number of model
parameters drastically

Feature maps

— Automatically extracted
hierarchical

— Retain spatial association
between pixels

Local interactions

Feature extraction Classification Prediction

— all processing happens within
tiny image windows

- . — within each layer, far-away pixels
Convoluticinal layers Fullyconnécted layers Outpu\tlayer Cannot influence nearby piXeIS

Translation invariance

— adogis adog even if its image is
shifted by a few pixels




Convolution & Feature

Receptive — Convolved image
field .

Input image (feature map)

Convolution kernel
with optimized weights

Convolution
filter (3 % 3)

Destination —

Values are weights that >

are initially set at Convolved ——
random and then fmage
learned




What CNNs
learn?

Deep V|Sua I I Zat|0n Deep Visualization Toolbox
TC)_OIbQX osinski.com/deepvis

#deepwis
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Jeff Clune Anh Nguyen Thomas Fuchs Hod Lipson

UNIVERSITY N(\sﬁ Jet Propulsion Laboratory
o \X/ \/ OMIN L_u Q W California Institute of Technology



https://www.youtube.com/watch?v=AgkfIQ4IGaM

Feature Visualisation

Low-Level Mid-Level i Trainable
Feature Feature Classifier

eature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Network Dissection

House Dog Train Plant Airplane
res5c unit 1410 loU=0.142 res5c unit 1573 loU=0.216 res5c unit 924 loU=0.293 res5c unit 264 loU=0.126 res5c unit 1243 loU=0.172

res5¢ unit 301 loU=0.193 res5c¢ unit 1379
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loU=0.115 lou=0.105

GooglLeNet

loU=0.086

loU=0.112




Translation Invariance

m O

But not rotation and scaling
iInvariance!




What about
generalisation?




Data — Generate variations

Augmentation of the input data
— To improve
generalisability
(out-of-

— Improve invariance
(rotation, scaling,
distortion)

ﬁﬁﬁ T — distribution inputs)




Data Geometric

Augmentation - Flipping, Cropping,
Rotation, Translation,

Noise Injection

Color space
transformation

Mixing Images
Random erasing

Adversarial training

GAN-based image
generation




Robustness to input
variation

bobsled 1.0 parachute 0.54




Transfer Learning

Model trained on large dataset
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Frozen layers

— Problem: training custom ML

models requires huge datasets

Transfer learning: take a
model trained on the same data
type for a similar task and apply
it to a specialised task using our
custom data.

— Same data: same data
modality. same types of
images (e.g., professional
pictures vs. Social media
pictures)

— Similar tasks: if you need a
new object classification
model, use a model pre-
trained for object classification




Advanced

Computer Vision
Techniques




Generative — Learn patterns from the training

Adversaria| Networks dataset and create new images
that have a similar distribution of

the training set

Two deep neural networks that
compete with each other

— The generator tries to
convert random noise into
observations that look as if
they have been sampled from
the original dataset

The discriminator tries to
predict whether an
observation comes from the
original dataset or is one of
the generator’s forgeries




— The generator’s — The discriminator
architecture looks like an
inverted CNN that starts
with a narrow input and
is upsampled a few
times until it reaches the
desired size

Upsampling
andom noise
i r
! o @

140 32

DE,

TXTX128 44 x14x128
8 x 28 x 1

's model is a typical
classification neural
network that aims to
classify images

generated by the
generator as real or fake

28 x 28 x 64




Which face is real?



https://www.whichfaceisreal.com/

Image super-resolution



https://blog.paperspace.com/image-super-resolution/

— ML-generated painting
sold for $432,500

The network trained on
a dataset of 15,000
portraits painted
between the

fourteenth and
twentieth centuries

Network “learned” the
style and generated a
new painting




Neural Style Transfer

Content Image | Style Image Stylized Result







Text-To-Image
Generation

"A street sign that reads 'A zombie in the "An image of an animal "An illustration of a slightly ’A painting of a "A watercolor painting of a "A shirt with the inscription:

“Latent Diffusion”’ style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!” ’
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Image-to-Image
Generation




Synthetic Video
Generation



https://www.synthesia.io/

Deep Fakes

Very realistic Tom
Cruise Deepfake



https://www.youtube.com/watch?v=iyiOVUbsPcM
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Credits

CMU Computer Vision course - Matthew O'Toole.

Grokking Machine Learning. Luis G. Serrano. Manning, 2021

[CIS 419/519 Applied Machine Learning]. Eric Eaton,
Dinesh Jayaraman.

Deep Learning Patterns and Practices - Andrew Ferlitsch,
Maanning, 2021

Machine Learning Design Patterns - Lakshmanan,
Robinson, Munn, 2020

Deep Learning for Vision Systems. Mohamed Elgendy.
Manning, 2020



http://16385.courses.cs.cmu.edu/spring2022/
https://www.seas.upenn.edu/~cis519/spring2020/

