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Machine LearningMachine Learning:
Observe pattern of features
and attempt to imitate it in
some way

– A feature is an individual
measurable property or
characteristic of a
phenomenon

–

Choosing informative,
discriminating, and
independent features is
essential for a well-working
ML

–

Features–
Images ⟶ pixel values
(e.g. B/W, RGB)

–

Numbers ⟶ OK–
What about text?text?–
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TextualTextual
DocumentsDocuments

A sequence of
alphanumerical
characters

–

Short: e.g. tweets–
Long: e.g Web
documents, interview
transcripts

–

Features are (set of)
words

–

Words are also
syntactically and
semantically
organised

–

Feature values are
(sets of) words
occurrences

–

Dimensionality ⟶ at
least dictionary size

–
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Main types ofMain types of
NLP TasksNLP Tasks

LabelLabel (classify) a region of text–
e.g. part-of-speech tagging,
sentiment classification, or
named-entity recognition

–

LinkLink two or more regions of text–
e.g. coreference–

are two mentions of a real-
world thing (e.g. a person,
place) in fact referencing
the same real-world thing?

–

Fill inFill in missing information
(missing words) based on
context

–
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LanguageLanguage
RepresentationRepresentation

Language = vocabulary and its usage
in a specific context captured by

textual data
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What is a What is a languagelanguage
modelmodel??

A collection of statistics learned
over a particular language

–

Almost always empirically derived
from a text corpora

–
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What are languageWhat are language
models used for?models used for?

MeasureMeasure how important (or
descriptive) a word is in a
given document collection

e.g., find the set of words
that best describe multiple
clusters (see Assignment 2)

–

PredictPredict how likely a
sequence of words is to
occur in a given context

e.g., find the words that are
more likely to occur next

–
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What is the issue withWhat is the issue with
word representation?word representation?
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Words are discretediscrete
symbolssymbols

–

Machine-learning
algorithms cannot
process symbolic
information as it is

–

We need to transform
the text into numbersnumbers

–

But we also need a way
to express
relationshipsrelationships between
words!

–



@@export_scripts@@

12

A simpleA simpleA simpleA simple
approachapproachapproachapproach

Assign an incremental
number to each word

–

– cat = 1
– dog = 2
– pizza = 3

ProblemProblemProblemProblem: there is no
notion of similarity

–

Is a cat as
semantically close
(similar) to a dog as a
dog is to a pizza

–

Also, no arithmetic
operations

–

Does it make sense to
calculate  to
establish similarity?

–
dog − cat
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Word EmbeddingsWord Embeddings
EmbedEmbed (&represent&) words in a
numerical n-dimensional space

–

Essential for using machine learning
approaches to solve NLP tasks

–

They bridge the symbolic (discrete)
world of words with the numerical
(continuous) world of machine learning
models

–
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Approach 1Approach 1Approach 1Approach 1

Assign numbers to
words, and put
semantically related
words close to each
other

We can now express
that  is more
related to  than to 

–
dog

cat

pizza

But is  more
related to  than to 

?

– pizza

dog

cat
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Approach 2Approach 2Approach 2Approach 2

Assign multiple numbers
(a vector) to words

cat     = [4, 2]

dog     = [3, 3]

pizza  = [1, 1]

We can calculate
distance (and
similarity)

–

e.g. Euclidean, or
Cosine (angles)

–

But what is thewhat is thewhat is thewhat is the
meaning of an axismeaning of an axismeaning of an axismeaning of an axis?

–
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One-Hot EncodingOne-Hot Encoding
Each word in the vocabulary is represented by a
one-bit position in a HUGE (sparsesparse) vector

–

Vector dimension = size of the dictionary–
There are an estimated 13 million tokens for the
English language

–

cat      = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, … , 0]

dog     = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, … , 0]

pizza  = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … , 0]
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Problems with one-hot
encoding:

–

The size of the vector can
be hugehuge

–

Do you Remember Zip’s
law?

–

Easy to reach  words– 106

But we can use stemming,
lemmatisation, etc

–

Still, no notion of similarity or
words relationship

–

Each word is an
independent, discrete entity

–
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Independent and identicallyIndependent and identically
distributeddistributed words assumption words assumption

The simplest language models assume that each
word in a text appears independentlyappears independently of the others

–

The text is modeled as generated by a sequence of
independent events

–

The probabilityprobability of a word can be estimated as the
number of times a word appears in a text corpus

–

But high probability does not mean importantdoes not mean important (or
descriptive)

–
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Back to the Back to the term-documentterm-document
matrixmatrix

How to measure the importance of
words?

–
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Term frequencyTerm frequencyTerm frequencyTerm frequency    tf

Raw frequency–

tf(t, d) = ft,d

Log normalisation–

tf(t, d) = log(1 +
f )t,d

Normalised Frequency–

tf(t, d) = 0.5 +
f (d)max

0.5ft,d

Measuring the
importance of a word 
to a document 

–
t

d

The more frequent the
word, the more
important it is to
describe the document

–
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Inverse documentInverse document
frequencyfrequency  IDF

IDF(t, D) =
log ∣d∈D:t∈d∣

N

Measuring the
importance of a
word  to a
document
collection 

–

t

D

Rare terms are
more important
than common terms

–
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TF − IDF

tfIDF(t, d, D) =
tf ×t,d IDFt,D

Scaling a word’s
importance (in a
document) based
on both its
frequency and its
importance in the
collection

–
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N-gram languageN-gram language
modelsmodels
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N-gramN-gram language language
modelsmodels

Calculate the conditional
probabilities among
adjacent words

–

Given the word , what is
the probability of the next
word 

– w

w + 1

e.g., given ,  vs.– eat eat on

eat British

bi-grams ⟶ 2 words, 3-
grams ⟶ 3 words

–
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N-gramN-gram language language
modelsmodels

More accurate–
The probabilities
depend on the
considered contextcontext

–

The model accuracy
increases with N

–

The syntactic/semantic
contexts are better
modeled

–

Grammatical rules–
e.g., an adjective is
likely to be followed by a
noun

–

Semantic restrictions–
e.g., Eat a pear vs. Eat a
crowbar

–

Cultural restrictions–
e.g., Eat a cat–
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Limits of N-grams-basedLimits of N-grams-based
Language ModelLanguage Model

Conditional probabilities are difficult to estimate–
For dictionary contains  terms there are 
N-grams (30K words, 900M bi-grams)

– D DN

the corpus should be billions of documents
big for a good estimation

–

They do not generalize to unseen wordsdo not generalize to unseen words
sequencessequences

–
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Representing wordsRepresenting words
by their contextsby their contexts

Distributional semanticsDistributional semantics: A
word’s meaning is given by the
words that frequently appear
close-by

–

When a word  appears in a
text, its contextcontext is the set of
words that appear nearby
(within a fixed-size window)

– w

The contexts in which aThe contexts in which a
word appears tell us muchword appears tell us much
about its meaningabout its meaning

–

“You shall know a word by the
company it keeps” - The
distributional hypothesis,
John Firth (1957)
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What other words
fit into these
contexts?

–

Contexts–
11 A bottle of ___ is
on the table

–

22  Everybody
likes ___

–

33 Don’t have ___
before you drive

–

44 We make ___
out of corn

–
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Distributional WordDistributional WordDistributional WordDistributional Word
EmbeddingsEmbeddingsEmbeddingsEmbeddings

cat      = [0.7, 0.5, 0.1]

dog     = [0.8, 0.3, 0.1]

pizza  = [0.1, 0.2, 0.8]

Define dimensions that allow
expressing a context

–

The vector for any particular
word captures how strongly
it is associated with each
context

–

For instance, in a  -
dimensional space, the axis
could have the semantic
meaning

– 3

 -axis represents some
concept of "animal-ness"

– x

 -axis corresponds to
"food-ness"

– z
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Distributional WordDistributional Word
EmbeddingsEmbeddings

cat      = [0.7, 0.5, 0.1]

dog     = [0.8, 0.3, 0.1]

pizza  = [0.1, 0.2, 0.8]

Defining the axes is difficultdifficult–
How many?–

A lot less than the size of
the dictionary (densedense
vectorsvectors)

–

But at least ~100-
dimensional, to be
effective

–

GPT-2 has 768, ChatGPT
12,288

–

How to assign values
associated with the vectors?

–

Tens of millions of numbers
to tweak

–
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How to calculate WordHow to calculate Word
Embeddings?Embeddings?

With machine learning modelsmachine learning models–
Advanced topic–

Wait for Advanced Machine
Learning for Design :)

–
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Ok, just a sneak peakOk, just a sneak peak

SKIPGRAM: Predict the probability of context
words from a centre word

–

InputInput: one-hot vector of the centre word–
the size of the vocabulary–
OutputOutput: one-hot vector of the output words–

the probability that the output word is
selected to be in the context window

–

Embeddings: lower-dimensional representation
of context of co-occurence

–
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Using WordUsing Word
EmbeddingsEmbeddings
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How canHow can
embeddings beembeddings be
used with NLPused with NLP
Models?Models?

Word embeddings are
trained from a corpus

–

And then they can
be reused!

–

3 scenarios–
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Scenario 1Scenario 1

Train word embeddings and your
model at the same time using the
train set for the task

–
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Scenario 2: Fine-TuningScenario 2: Fine-Tuning

Initialise the model using the pre-
trained word embeddings

–

e.g., train on Wikipedia, or large Web
corpora

–

Keep the embedding fixed while
training the model for the task

–

Another example of transfer learning–
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Scenario 3: AdaptationScenario 3: Adaptation

The embeddings are adapted while
the downstream model is trained,
the train set for the task

–

Same as Scenario 2, but the
embeddings are now more close
to the words distribution in your
training set

–
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Evaluating WordEvaluating Word
EmbeddingsEmbeddings
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How to evaluateHow to evaluate
word vectors?word vectors?
IntrinsicIntrinsic: evaluation on a
specific/intermediate
subtask (e.g. analogy)

–

Fast to compute–
It helps to understand
that system

–

Not clear if helpful
unless correlation to
the actual task is
established

–

ExtrinsicExtrinsic: evaluation of a
real task

–

It can take a long time
to compute the
accuracy

–

Unclear if the
subsystem is the
problem or if it is an
interaction with other
subsystems

–
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IntrinsicIntrinsic
evaluationevaluation

Word vector
analogiesanalogies

–

a : b = c :?

man : woman =
king :?
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Intrinsic evaluationIntrinsic evaluationIntrinsic evaluationIntrinsic evaluation
Find a word such that the
vector is closest (cosine
similarity) to 

–

vec[man] −
vec[woman] + vec[king]

Correct if the word found
is 

–
queen

Can be applied to test for
syntactic analogy as well

–

– Quick : quickly =
slow : slowly
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Gender relationGender relation
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Company - CEOCompany - CEO
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Countries and their capitalCountries and their capital
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Comparatives and SuperlativesComparatives and Superlatives
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There are problems, ofThere are problems, of
coursecourse

By exploring the semantic space, you can
also find analogies like

–

 is to  as  is to – T hirsty drink tired

drunk

 is to  as  is to – F ish water bird

hydrant
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Biases in word vectors might leak
through to produce unexpectedunexpected,
hard-to-predicthard-to-predict biases
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 is to  as 
 is to ______

– man woman

computer programmer

 is to  as 
 is to ______

– woman man

computer programmer

 is to  as  is to ______– man genius woman

 is to  as  is to ______– woman genius man
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 is to  as 
 is to homemaker

– man woman

computer programmer

 is to  as 
 is to mechanical

engineer

– woman man

computer programmer

 is to  as  is to muse– man genius woman

 is to  as  is to
geniuses

– woman genius man
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MachineMachine
Learning forLearning for
DesignDesign
Lecture 6
Natural Language Processing - Part 2
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