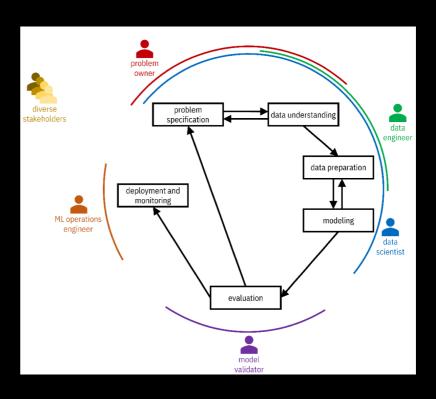
Machine Learning for Design

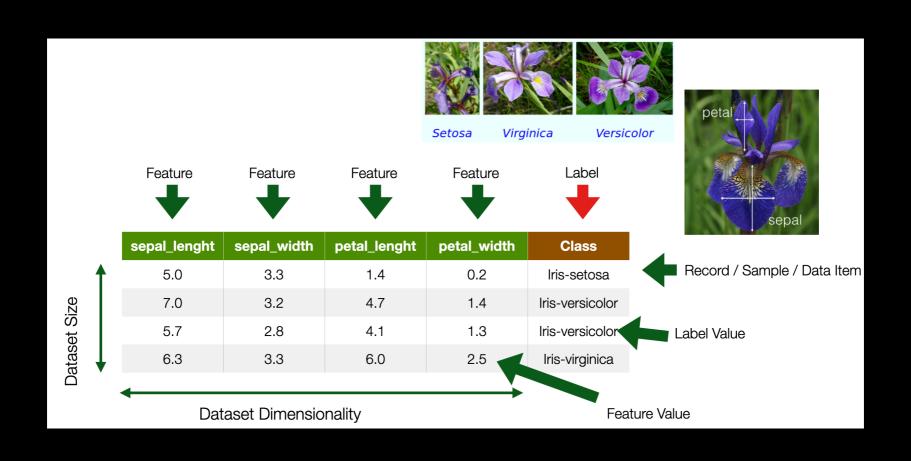
Lecture 7
Design and Develop Machine
Learning Models - *Part 1*

Previously on ML4D

CRISP-DM Methodology



Data



Types of Features / Label Values

Categorical

- Named Data
- Can take numerical values, but no mathematical meaning
- Numerical
 - Measurements
 - Take numerical values (discrete or continuous)

Categorical Nominal Categorical Ordinal

- No order
- No direction

- Order
- Direction
- e.g. marital status,
 e.g., letter grades gender, ethnicity (A,B,C,D), ratings (dislike, neutral, like)

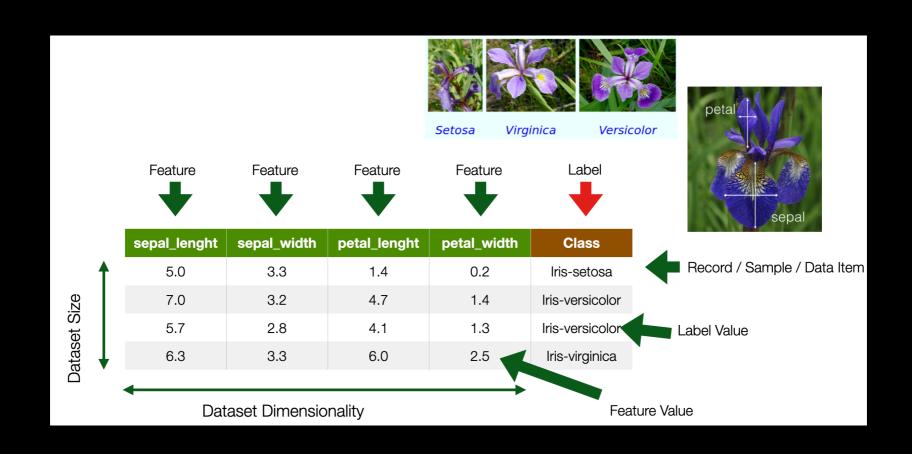
Numerical Interval Numerical Ratio

- Difference between Difference between measurements
- No true zero or fixed beginning
- e.g., temperature (C or F), IQ, time, dates

- measurements
- True zero exists
- e.g., temperature (K), age, height

Data Preparation

Ideal Data



Real Data

MSSubClass	MSZoning	LotFrontage	LotArea	_Street	Alley	LotShape	•••	MoSold	YrSold	SaleType S	aleCondition	SalePrice
20	RL	Catego	rical	Pave	Ord	inal feat	ures	5	2 008	Numeri	ic Normal	174000
180	RM	featur	2675	Pave	NaN	Reg	***	5	2 006	feature	Normal	145000
60	FV	72.0	8640	Pave	NaN	Reg	•••	6	2 010	Con	Normal	215200
20	RL	84.0	11670	Pave	NaN	IR1	•••	3	2007	WD	Normal	320000
60	RL	Looks n	umeric	. but is	NaN	IR2	•••	4	2009	ConLw	Normal	212000
80	RL	actuall		Davis	NaN	Reg	•••	6	2008	WD	Normal	168500
60	m	70.0	11218	Pave	NaN	Reg	•••	5	2010	WD	Normal	189000
80	RL	85.0	13825	Pave	NaN	Reg	•••	12	2008	WD	Normal	140000
60	RL	NaN	13031	Pave	NaN	IR2	•••	7	2006	WD	Normal	187500

- Data is rarely "clean"
- Approximately 50-80% of the time is spent on data wrangling
 - probably an under-estimation
- Having good data with the correct features is critical

- 3 issues to deal with:
 - Encoding features as numerical values
 - Transforming features to make
 ML algorithms work better
 - Dealing with missing feature values

Data Encoding

Numerical Features

Each feature is assigned its own value in the feature space

IsAdult	Age	IsAdult	Age
FALSE	17	0	17
TRUE	21	1	21
TRUE	34	1	34
FALSE	9	0	9

Categorical Features

- Why not encode each value as an integer?
 - A naive integer encoding would create an ordering of the feature values that does not exist in the original data
 - You can try direct integer encoding if a feature does have a natural ordering (ORDINAL e.g. ECTS grades A–F)

One-hot Encoding

 Each value of a categorical feature gets its own column

Status	Gender	Status Single	Status Married	Gender M	Gender F	Gend O
Single	М	1	0	1	0	0
Married	F	0	1	0	1	0
Single	Ο	1	0	0	0	1
Single	М	1	0	1	0	0

Ordinal Features

- Convert to a number, preserving the order
 - $[low, medium, high] \rightarrow [1, 2, 3]$
- Encoding may not capture relative differences

Health Status	Blood Pressure
Good	Very good
Very Good	Excellent
Normal	Good
Bad	Normal

Health Status	Blood Pressure
3	4
4	5
2	3
1	1

Data Quality Issues

Incorrect feature values

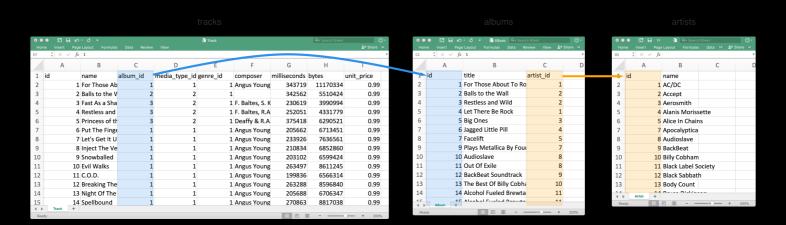
- Typos
 - e.g., color =
 "blue", "green", "green", "red"
- Garbage
 - e.g., color = "w r--śij"
- Inconsistent spelling (e.g., "color", "colour") or capitalization
- Inconsistent abbreviations (e.g., "Oak St.", "Oak Street")

Missing labels (classes)

- Delete instances if only a few are missing labels
- Use semi-supervised learning techniques
- Predict the missing labels via selfsupervision

Merging Data

- Data may be split across different files (or systems!)
 - join based on a key to combine data into one table



Problems During Merge

- Inconsistent data
 - Same instance key
 Key aspects with conflicting labels
 - Data duplication
- Data size
 - Data might be too big to integrate

- Encoding issues
 - Inconsistent data formats or terminology
 - mentioned in cell comments or auxiliary files

Dealing With Missing Values

sepal_lenght	sepal_width	petal_lenght	petal_width	Class
5.0	3.3	1.4	0.2	Iris-setosa
7.0	NaN	4.7	1.4	Iris-versicolor
5.7	2.8	4.1	1.3	
6.3	NaN	6.0	2.5	Iris-virginica

Why can data be missing?

- "Good" reason: not all instances are meant to have a value
- Otherwise
 - Technical issues (e.g. Data Quality)

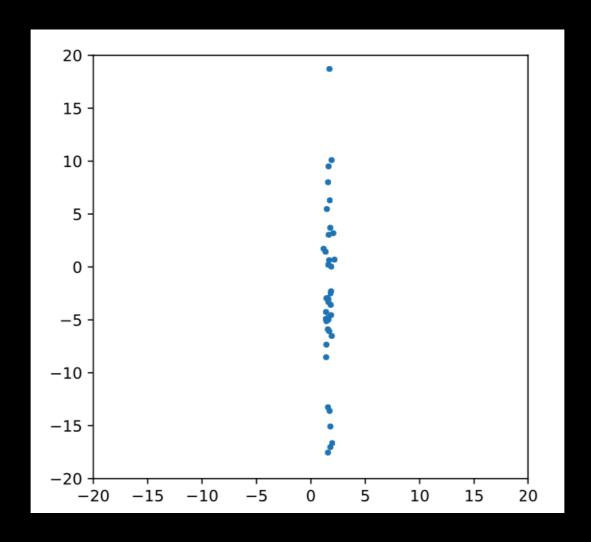
Dealing with missing data

- Delete features with mostly missing values (columns)
- Delete instances with missing features (rows)
 - Only if rare
- Feature imputation
 - "fill in the blanks"

Feature Imputation

- Replacing with a constant
 - the mean feature value (numerical)
 - the mode (categorical or ordinal)
 - "flag" missing values using out-ofrange values
- Replacing with a random value
- Predicting the feature value from other features

What if our features look like this?



- What if the features have different magnitudes?
- Does it matter if a feature is represented as meters or millimetres?
- What if there are outliers?

- Values spread strongly affect many models:
 - linear models (linear SVC, logistic regression, . . .)
 - neural networks
 - models based on distance or similarity
 (e.g. kNN)
- It does not matter for most tree-based predictors

Feature Normalisation

- Needed for many algorithms to work properly
 - Or to speed up training

Min/Max Scaling

$$f_{new} = rac{f - f_{max}}{f_{max} - f_{min}}$$

- Values scaledbetween 0 and 1
- f_{max} and f_{min} need to be known in advance

Standard Scaling

$$f_{new} = rac{f - \mu_f}{\sigma_f}$$

- Rescales features
 to have zero mean
 and unit variance
- Outliers can cause problems

$$x_{new} = rac{x}{|x|}$$

Scaling to unit length - Typical for textual document

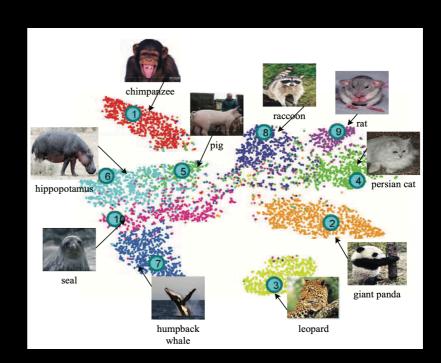
Other features transformation

- Improve performance by applying other numerical transformation
 - logarithm, square root, . . .
 - TF-IDF

- It depends a lot on the data!
 - Trial and error
 - Exploration
 - Intuition

Feature Selection and Removal

- Problem: the number of features may be very large
 - Important information is drowned out
 - Longer model training time
 - More complexity → bad for generalization
- Solution: leave out some features
 - But which ones?
- Feature selection methods
 can find a useful subset

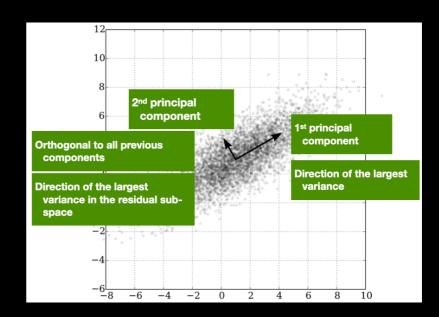


Feature Selection

- Idea: find a subspace that retains most of the information about the original data
 - Pretty much as we were doing with word embeddings
- PRO: fewer dimensions make for datasets that are easier to explore and visualise, and faster training of ML algorithms
- CONS: drop in prediction accuracy (less information)
- There are many different methods, Principal
 Component Analysis is a classic

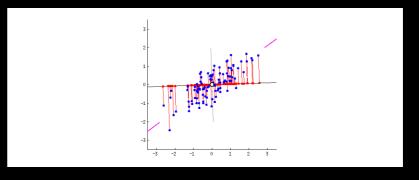
Principal Component Analysis

- Idea: features can be highly correlated with each other
 - redundant information
- Principal components: new features constructed as *linear* combinations or mixtures of the initial features
- The new features (i.e., principal components) are uncorrelated
 - Most of the information within the initial features is compressed into the first components



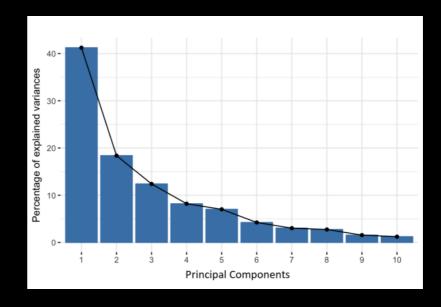
Principal Component Analysis

- Orthogonal projection of data onto lower-dimension linear space that:
 - Maximizes the variance of projected data (purple line)
 - Minimizes mean squared distance between data point and projections (sum of red lines)



Dimensionality Reduction

- Use the PCA transformation of the data instead of the original features
- Ignore the components
 of less significance (e.g.,
 only pick the first three
 components)



- PCA keeps most of the variance of the data
- So, we are reducing the dataset to features that retain meaningful variations of the dataset

And now, let's Smell Pittsburgh Credits: Yen-Chia Hsu

Machine Learning for Design

Lecture 7
Design and Develop Machine
Learning Models - *Part 1*

Credits

CIS 419/519 <u>Applied Machine</u> <u>Learning</u>. Eric Eaton, Dinesh Jayaraman.

<u>A Step-by-Step Explanation of</u>
Principal Component Analysis (PCA).