Machine <u>earning</u> for Lecture 8 **Design and Develop Machine** Learning Models - Part 2

ML Algorithms on Structured Data

Decision Trees

- Trained with *labelled* data (supervised learning)
 - − classes →
 classification
 - $values \rightarrow regression$
- Simple model that resembles human reasoning:
 - Answering a lot of yes/no questions based on feature values

Problems

- Which questions to answer?
- How many questions? (Tree depth)
- In which order?

Same Problem, Multiple Trees

- Am I hungry?
- Is there a red car outside?
- Is it Monday?
- Is it raining?
- Is it cold outside?

Same Problem, Multiple Trees

- Am I hungry?
- Is there a red car outside?
- Is it Monday?
- Is it raining?
- Is it cold outside?

Same Problem, Multiple Trees

- Am I hungry?
- Is there a red car outside?
- Is it Monday?
- Is it raining?
- Is it cold outside?

Same Decision, different tress

How to decide the best question to ask?

- Accuracy
 - Which question helps me be correct more often?

- Gini Impurity Index

- A measure of diversity in a dataset \rightarrow diversity of classes in a given leaf node
 - index = 0 means that all the items in a leaf node have the same class
- Which question helps me obtain the *lowest average Gini impurity Index*?

- Entropy

- Another measure of diversity linked to information theory
- Which question helps me obtain the lowest average **entropy**?

Building the tree (pseudo-code)

- Add a root node, and associate it with the entire dataset
 - This node has level 0. Call it a leaf node

- Repeat until the stopping conditions are met at every leaf node

- Pick one of the leaf nodes at the highest level
- Go through all the features, and select the one that splits the samples corresponding to that node in an optimal way, according to the selected metric.
 - Associate that feature to the node
- This feature splits the dataset into two branches
 - Create two new leaf nodes, one for each branch
 - Associate the corresponding samples to each of the nodes
- If the stopping conditions allow a split, turn the node into a decision node, and add two new leaf nodes underneath it
 - If the level of the node is i, the two new leaf nodes are at level i+1
- If the stopping conditions don't allow a split, the node becomes a leaf node
 - Associate the most common label among its samples
 - That label is the prediction at the leaf

A geometrical perspective

- Step 1 Select the first question
- $\neg X >= 5$
 - Best possible prediction
 accuracy with one feature

A geometrical perspective

-
$$x < 5 \& y < 8;$$

-
$$x>=5\&y>=2$$

 Perfect split of the feature space

Decision Trees: Pros

- Simple to understand and interpret.
 - Trees can be visualized
- Requires little data preparation
 - Other techniques often require data normalisation, dummy variables need to be created, and blank values need to be removed
- Able to handle both numerical and categorical data

Decision Trees: Cons

Possible to create
 over-complex trees
 that do not generalize
 the data well

overfitting

- Unstable → small variations in the data might result in a completely different tree being generated
- Biased trees if some classes dominate

Ensemble Learning

Idea: combine several "weak" learners to build a strong learner

Random Forest:

Weak learners are decision trees

- Build random training sets from the dataset
- Train a different model on each of the sets
 - weak learners
- Combination the weak models by voting (if it is a classification model) or averaging the predictions (if it is a regression model)
 - For any input, each of the weak learners predicts a value
 - The most common output (or the average) is the output of the strong learner

Clustering

What is clustering?

- Grouping items that
 "belong together"
 (i.e. have similar
 features)
- Unsupervised
 learning: we only
 use data features,
 not the labels

- We can detect patterns
 - Group emails or search results
 - Customershoppingpatterns
 - Regions of images

- Useful when you
 don't know what
 you're looking for
 - But: can give you gibberish
- If the goal is classification, we can later ask a human to label each group (cluster)

Why do we cluster?

- Summarizing data
 - Look at large amounts of data
 - Represent a large continuous vector with the cluster number
- Counting
 - Computing feature histograms
- Prediction
 - Images in the same cluster may have the same labels
- Segmentation
 - Separate the image into different regions

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centres
 - Alternate:
 - Assign data points to the closest cluster centre
 - Change the cluster centre to the average of its assigned points
 - Stop when no points' assignments change

Add 3 Centroids (randomly)

Assign Data Points

Update Centroids

Re-Assign Data Points

Update Centroids

28

Re-Assign Data Points

Update Centroids

30

Re-Assign Data Points - Stop

Add 4 Centroids (randomly)

K-Means Pros

- Simple, fast to compute
 - Guaranteed to
 converge in a
 finite number of
 iterations

K-Means Cons

- Setting k?
 - One way: silhouette coefficient
- Algorithm is **heuristic**
 - It does matter what random points you pick!
 - Sensitive to outliers

Example of K-means not working

Back to Evaluation

- No free-lunch:
 there is no one best
 machine learning
 algorithm for all
 problems and
 datasets
- How well does a learned model
 generalize to a new evaluation set?
- Challenge:
 achieving good
 generalization and
 a small error

Underfitting vs. Overfitting

Regression

Classification

Components of expected loss

- Noise in data: *unavoidable*
- Bias: how much the average model differs from the true model
 - Error due to inaccurate assumptions/simplifications made by the model
- Variance: how much models estimated from different training sets differ from each other
 - Too much sensitivity to the samples

Protect Against overfitting

Low bias and high variance

Low training error and high test error

- The model
 - is too complex
 - matches too
 closely the
 idiosyncrasies
 (noise) of the
 training data

Protect Against underfitting

High bias and low variance

High training error and high test error

- The model
 - is too simple
 - does not
 adequately
 capture the
 patterns in the
 training data

Tuning Hyperparameters

Hyper-parameter: Inputs to the learning algorithms that control their behavior

- Examples:
 - maximum tree depth in decision trees
 - number of neighbors k in k-nearest neighbor
 - Neural networks: architecture, learning rate

Tuning Hyper- – For a model to work parameters

well, they often need to be tuned carefully

 Huge search space! may be inefficient to search exhaustively

Tuning Hyperparameters: Approaches

 DON'T optimise these numbers by looking at the test set!That is CHEATING!

- Grid search: brute-force exhaustive search among a finite set of hyperparameter settings
 - All combinations are tried, then the best setting selected
- Random search: for each hyper-parameter, define a distribution (e.g., normal, uniform)
 - In the search loop, we sample randomly from these distributions

Double Cross-Validation

- Cross-validation inside another cross-validation
 - To optimise over the hyperparameter
- The minimum error is often not the most interesting. Try to understand the advantages/disadvantages
 - What errors are made? (inspect objects, inspect labels)
 - What classes are problematic? (confusion matrix)
 - Does adding training data help? (learning curve)
 - How robust is the model?

Machine earning for Lecture 8 **Design and Develop Machine** Learning Models - Part 2

17

Credits

Grokking Machine Learning. Luis G. Serrano. Manning, 2021

[<u>CIS 419/519 Applied Machine Learning</u>]. Eric Eaton, Dinesh Jayaraman.

https://scikit-learn.org/stable/modules/tree.html

Deep Learning Patterns and Practices - Andrew Ferlitsch, Maanning, 2021

Machine Learning Design Patterns -Lakshmanan, Robinson, Munn, 2020