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Lecture 4
Machine Learning for Images. Part 2




How
do humans
see?
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FIGURE 4.8 Response of a single cortical cell to bars presented at various orientations.
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Neural Correlation

of Objects & Scene Recognition

Faces > Houses :

Inta

Stimuli

Scrambled

% signal change

Kanwisher et al. J. Neuro. 1997

Epstein & Kanwisher, Nature, 1998



Why Is machine
vision hard?




The deformable and
truncated cat

most) unconstrained variations in shape and layout.
Parkhi et al. The truth about cats and dogs. 2011
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Computer Vision
Challenges



Viewpoint Variation
A single instance of an object can be oriented in many
ways to the camera.
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Deformation
Many objects of interest are not rigid bodies and can
be deformed in extreme ways.

Defon'ntion
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Occlusion
The objects of interest can be occluded. Sometimes only
a tiny portion of an object (as few pixels) could be visible.

Occlusion
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lllumination Condition
The effects of illumination can be drastic on the pixel
level.

lllumination conditions
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Scale variation

— Visual classes often
exhibit variation in
their size

— Size In the real
world

— Size in the image

Scale variation
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Background clutter
The objects of interest may blend into their
environment, making them hard to identify.

Background clutter
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Intra-class variation

— The classes of
interest can often be
relatively broad, such
as chairs.

— There are many
different types of
these objects, each
with their
appearance.
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How Computer
Vision models
work?




Course of
dimensionality

— High dimensionality
- A 1024x768 image has d =
786432!
— A tiny 32x32 image has d =
1024

— Decision boundaries in pixel
space are extremely complex

— We will need “big” ML models
with lots of parameters

— For example, linear regressors
need d parameters

pixel space
(=~ 10° dimensions)
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Downsampling

1024
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224




Flattening

d = width x height

Height <

>

>
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Input layer size = d
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The “old days”: Feature
Extraction

— Feature

— A relevant piece of information about the
content of an image

- e.g., edges, corners, blobs (regions),
ridges

- A good feature
— Repeatable
— ldentifiable
— Can be easily tracked and compared

— Consistent across different scales,
lighting conditions, and viewing angles

— Visible in noisy images or when only part
of an object is visible

— Can distinguish objects from one another

®©

. B @

Feature after looking Feature after looking
at one image at thousands of images
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The “old days”: Feature Engineering

— Machine learning models are only as good as the features you
provide

— To figure out which features you should use for a specific problem
— Rely on domain knowledge (or partner with domain experts)

— Experiment to create features that make machine learning algorithms
work better

Handcrafted Feature T
input Extraction Classification Module Output

Width

100%

>

SVM
Neural Network

0%

Dog Cat



Feature Extraction
Techniques

Scale-Invariant Feature Transform (SIFT)

Find “interest points” Compute features at

in the scene interest pointg
o | g“ , -+

Convert to fixed-dimensional
feature vector

Histogram

24



25

Performance

Object Detection (~2007) Face Detection (~2013)

Felzenszwalb, Ramanan, McAllester. A Discriminatively Trained, Multiscale, - ‘ Rl
Deformable Part Model. CVPR 2008 (DPM v1) https://github.com/alexdemartos/ViolaAndJones



Convolutional Neural Networks

Feature extraction

Classification

Feature maps

Input layer
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Feature maps
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Convolutional layers

Feature
maps

Flattened

Prediction
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Fully connected layers

— CNNs exploit image properties to reduce the number of model parameters drastically

— Feature maps

— Automatically extracted hierarchical features

— Retain spatial association between pixels

— Local interactions

— All processing happens within tiny image windows
— Within each layer, far-away pixels cannot influence nearby pixels

— Translation invariance

— A dogis a dog even if its image is shifted by a few pixels

Output layer
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Maps
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onvolution & Feature

Convolved image
(feature map)




What CNNs learn?
Deep Visualization Toolbox

Deep Visualization Toolbox

yosinski.com/deepvis

\ 41" }

#deepvis
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Jason Yosinski Jeff Clune Anh Nguyen Thomas Fuchs Hod Lipson

UNIVERSIT Y Jet Propulsion Laboratory
P O \Y/ y OMING ; California Institute of Technology
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https://www.youtube.com/watch?v=AgkfIQ4IGaM

Feature Visualisation

Low-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Mid-Level
Feature

Trainable
Classifier
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Network Dissection

House Dog Train Plant Airplane
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Translation Invariance

A

A
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But not rotation and scaling invariance!



What about
generalisation?




Data
Augmentation

— Generate variations of
the input data

— To improve
generalisability (out-
of-distribution inputs)

— Improve invariance
(rotation, scaling,
distortion)
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Data Augmentation

Geometric

— Flipping, Cropping,
Rotation, Translation,

Noise Injection

Color space transformation
Mixing Images

Random erasing
Adversarial training

GAN-based image
generation
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Robusthess to input
variation
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Transfer Learning

— Problem: training custom ML
mOdels reqU|reS huge datasets Model trained on large dataset

----------------------------------
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— Transfer learning: take a model
trained on the same data type for a
similar task and apply it to a
specialised task using our custom
data.

— Same data: same data modality.
same types of images (e.qg.,
professional pictures vs. Social
media pictures)

I
1 Output layer
il |

----------------------------------

— Similar tasks: if you need a new
object classification model, use a rrozentayers o
model pre-trained for object
classification




Advanced
Computer Vision
Techniques
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Generative Adversarial Networks

Training set
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7 Fake image

Discriminator

Generator

— Learn patterns from the training dataset and create new images that have a similar
distribution of the training set
— Two deep neural networks that compete with each other

— The generator tries to convert random noise into observations that look as if
they have been sampled from the original dataset

— The discriminator tries to predict whether an observation comes from the
original dataset or is one of the generator’s forgeries



42

— The generator’s architecture - The discriminator
looks like an inverted CNN
that starts with a narrow
input and is upsampled a few
times until it reaches the
desired size

's model is a typical
classification neural network
that aims to classify images
generated by the generator
as real or fake

A

Upsampling

0.1
S —_— realness
probability output

TxTx128 44 44 %128 /
28 x 28 x 64 L

28 x 28 x 1




Which face is real?
e e e e e s e s



https://www.whichfaceisreal.com/

Image super-resolution
GAN

— A good technical summary


https://blog.paperspace.com/image-super-resolution/
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— ML-generated painting
sold for $432,500

— The network trained on
a dataset of 15,000
portraits painted
between the
fourteenth and
twentieth centuries

. — Network “learned” the
e Style and generated a
new painting




Neural Style Transfer

s ';f;m +

Content Image Style Image Stylized Result
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'A street sign that reads 'A zombie in the

“Latent Diffusion” ’ style of Picasso’

"An image of an animal

half mouse half octopus’

‘An illustration of a slightly

conscious neural network’

"A painting of a

squirrel eating a burger’

"A watercolor painting of a

chair that looks like an octopus’
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Text-To-Image Generation

"A shirt with the inscription:

“I love generative models!” ’

.
(" LATENT
DIFFUSION

_ATETEN
DIFFUSION _

Gonorastive Moodal)

Generative



Computer Science
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Latent Space
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Image-to-Image
Generation




Synthetic Video
Generation

Generated from Synthesia.io



https://www.synthesia.io/

Deep Fakes

Very realistic Tom
Cruise Deepfake



https://www.youtube.com/watch?v=iyiOVUbsPcM
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Credits

CMU Computer Vision course - Matthew O'Toole.

Grokking Machine Learning. Luis G. Serrano. Manning, 2021

[CIS 419/519 Applied Machine Learning]. Eric Eaton, Dinesh
Jayaraman.

Deep Learning Patterns and Practices - Andrew Ferlitsch,
Maanning, 2021

Machine Learning Design Patterns - Lakshmanan, Robinson,
Munn, 2020

Deep Learning for Vision Systems. Mohamed Elgendy.
Manning, 2020
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https://www.seas.upenn.edu/~cis519/spring2020/

